3 research outputs found

    The Effect Of Ethanolic Bee Pollen Extract From Geniotrigona Thoracica On Dna Damage And Dna Methylation In Ht-29 Colorectal Cell Line

    Get PDF
    This study aims to investigate the protective effect of stingless bee pollen against DNA damage and to measure the effect of bee pollen on global DNA methylation

    Bee pollen extract of Malaysian stingless bee enhances the effect of cisplatin on breast cancer cell lines

    Get PDF
    Objective: To evaluate the antioxidant and antiproliferative effect of methanolic bee pollen extract (BPE) of Malaysian stingless bee [Lepidotrigona terminata (L. terminata)] and its synergistic effect with cisplatin (a chemotherapeutic drug) on MCF-7 cancer cell line. Methods: The antioxidant activity of BPE from L. terminata was measured by using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Antiproliferative activity at different concentrations of BPE and cisplatin was determined through using MTT assay on MCF-7 and L929 cell lines. An interaction effect (synergistic, additive and antagonistic) between BPE and cisplatin was determined by CompuSyn software based on MTT assay data. Results: The EC50 (50% decrement of DPPH inhibition) of BPE was 0.5 mg/mL. L. terminata BPE exhibited antiproliferative activity on both cancer and normal cell lines. The IC50 (concentration of drug that was required for 50% of cell inhibition in vitro) of BPE on MCF-7 was 15 mg/mL whereas in normal cell line L929 was 26 mg/mL. The IC50 for cisplatin on MCF-7 was 20 μmol/L. The combination effect of BPE and cisplatin on MCF-7 cells showed that BPE at 15 mg/mL was able to potentiate the inhibitory effect of cisplatin at all different concentrations (2.5–20.0 mg/mL). The average of cancer cells inhibition which was potentiated by BPE was around 50%. A combination index values of less than 1 reported in the CompuSyn software further proved the synergistic effect between BPE and cisplatin, suggesting that BPE was working synergistically with cisplatin. Conclusions: Our study therefore suggested that BPE of Malaysian stingless bee, L. terminata is a potential chemopreventive agent and can be used as a supplementary treatment for chemotherapy drugs. BPE might be able to be used to potentiate the effect of chemotherapy drugs with the possibility to reduce the required dose of the drugs. The molecular mechanisms of how the BPE exerts antiproliferative activity will be a much interesting area to look for in future studies

    GC-MS Analysis of Chemical Constituents in Ethanolic Bee Pollen Extracts from Three Species of Malaysian Stingless Bee

    No full text
    The pollen of stingless bees is derived from flower pollen mixed with bee digestive enzymes and preserved with honey and nectar. In this study, the volatile compounds present in ethanolic bee pollen extracts (BPEs) from three species of the Malaysian stingless bee were analyzed using gas chromatography-mass spectrometry (GC-MS). Hydrocarbons, sugars and its derivatives, fatty acids, amino acids, alcohol, uridine, aldehyde and an unknown carbamate were detected. Mannitol, the main sugar compounds, represented 54.34% in Trigona thoracica, 39.11% in Trigona apicalis and 33.05% in Trigona itama. Propanoic acid and hexadecanoic acid were the main hydrocarbons present in the extract of Trigona apicalis (4.04%) and Trigona thoracica pollen (1.28%) respectively. The polyunsaturated fatty acids linoleic acid and α-linolenic acid were found in small amounts in all BPEs (0.07-1.11%). The chemical compounds found in BPEs had biological activities, thus bee pollen may be useful in traditional medicine and as a health supplement
    corecore