7 research outputs found
Development of a behaviour-based scale to measure acute pain in dogs
A composite scale for assessing pain in dogs in a hospital setting has been developed on the basis of observations of their behaviour. Initially, 279 words and expressions suggested by 69 veterinary surgeons were reduced into 47 words and expressions which were allocated into seven behaviour categories: demeanour and response to people, posture, mobility, activity, response to touch, attention to painful area and vocalisation. Three statistical methods, hierarchical agglomerative cluster analysis, Cronbach's alpha coefficient, and analysis of variance with multiple comparisons and empirical cumulative distributions, were used to validate these procedures, and a questionnaire accompanied by a list of definitions was designed around the expressions. The new composite scale is more detailed than previously reported scales for assessing pain in dogs on the basis of their behaviour, and the methods used in its development are based on sound scientific principles
Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability
Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3–9; median total sample = 1,279.5, range = 276–3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Δr = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00–.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19–.50)
Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability
Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3–9; median total sample = 1,279.5, range = 276–3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Δr = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00–.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19–.50)