28 research outputs found

    Developing a personalized remote patient monitoring algorithm: a proof-of-concept in heart failure

    Get PDF
    Aims Non-invasive remote patient monitoring is an increasingly popular technique to aid clinicians in the early detection of worsening heart failure (HF) alongside regular follow-ups. However, previous studies have shown mixed results in the performance of such systems. Therefore, we developed and evaluated a personalized monitoring algorithm aimed at increasing positive-predictive-value (PPV) (i.e. alarm quality) and compared performance with simple rule-of-thumb and moving average convergence-divergence algorithms (MACD). Methods and results In this proof-of-concept study, the developed algorithm was applied to retrospective data of daily bodyweight, heart rate, and systolic blood pressure of 74 HF-patients with a median observation period of 327 days (IQR: 183 days), during which 31 patients experienced 64 clinical worsening HF episodes. The algorithm combined information on both the monitored patients and a group of stable HF patients, and is increasingly personalized over time, using linear mixed-effect modelling and statistical process control charts. Optimized on alarm quality, heart rate showed the highest PPV (Personalized: 92%, MACD: 2%, Rule-of-thumb: 7%) with an F1 score of (Personalized: 28%, MACD: 6%, Rule-of-thumb: 8%). Bodyweight demonstrated the lowest PPV (Personalized: 16%, MACD: 0%, Rule-of-thumb: 6%) and F1 score (Personalized: 10%, MACD: 3%, Rule-of-thumb: 7%) overall compared methods. Conclusion The personalized algorithm with flexible patient-tailored thresholds led to higher PPV, and performance was more sensitive compared to common simple monitoring methods (rule-of-thumb and MACD). However, many episodes of worsening HF remained undetected. Heart rate and systolic blood pressure monitoring outperformed bodyweight in predicting worsening HF. The algorithm source code is publicly available for future validation and improvement

    Monitoring left ventricular assist device parameters to detect flow- and power-impacting complications: a proof of concept

    Get PDF
    Aims The number of patients on left ventricular assist device (LVAD) support increases due to the growing number of patients with end-stage heart failure and the limited number of donor hearts. Despite improving survival rates, patients frequently suffer from adverse events such as cardiac arrhythmia and major bleeding. Telemonitoring is a potentially powerful tool to early detect deteriorations and may further improve outcome after LVAD implantation. Hence, we developed a personalized algorithm to remotely monitor HeartMate3 (HM3) pump parameters aiming to early detect unscheduled admissions due to cardiac arrhythmia or major bleeding. Methods and results The source code of the algorithm is published in an open repository. The algorithm was optimized and tested retrospectively using HeartMate 3 (HM3) power and flow data of 120 patients, including 29 admissions due to cardiac arrhythmia and 14 admissions due to major bleeding. Using a true alarm window of 14 days prior to the admission date, the algorithm detected 59 and 79% of unscheduled admissions due to cardiac arrhythmia and major bleeding, respectively, with a false alarm rate of 2%. Conclusion The proposed algorithm showed that the personalized algorithm is a viable approach to early identify cardiac arrhythmia and major bleeding by monitoring HM3 pump parameters. External validation is needed and integration with other clinical parameters could potentially improve the predictive value. In addition, the algorithm can be further enhanced using continuous data

    Data-driven monitoring in patients on left ventricular assist device support

    Get PDF
    Introduction: Despite an increasing population of patients supported with a left ventricular assist device (LVAD), it remains a complex therapy, and patients are frequently admitted. Therefore, a strict follow-up including frequent hospital visits, patient self-management and telemonitoring is needed. Areas covered: The current review describes the principles of LVADs, the possibilities of (tele)monitoring using noninvasive and invasive devices. Furthermore, possibilities, challenges, and future perspectives in this emerging field are discussed. Expert Opinion: Several studies described initial experiences on telemonitoring in LVAD patients, using mobile phone applications to collect clinical data and pump data. This may replace frequent hospital visits in near future. In addition, algorithms were developed aiming to early detect pump thrombosis or driveline infections. Since not all complications are reflected by pump parameters, data from different sources should be combined to detect a broader spectrum of complications in an early stage. We need to focus on the development of sophisticated but understandable algorithms and infrastructure combining different data sources, while addressing essential aspects such as data safety, privacy, and cost-effectiveness

    Monitoring left ventricular assist device parameters to detect flow- and power-impacting complications: a proof of concept

    Get PDF
    AIMS: The number of patients on left ventricular assist device (LVAD) support increases due to the growing number of patients with end-stage heart failure and the limited number of donor hearts. Despite improving survival rates, patients frequently suffer from adverse events such as cardiac arrhythmia and major bleeding. Telemonitoring is a potentially powerful tool to early detect deteriorations and may further improve outcome after LVAD implantation. Hence, we developed a personalized algorithm to remotely monitor HeartMate3 (HM3) pump parameters aiming to early detect unscheduled admissions due to cardiac arrhythmia or major bleeding. METHODS AND RESULTS: The source code of the algorithm is published in an open repository. The algorithm was optimized and tested retrospectively using HeartMate 3 (HM3) power and flow data of 120 patients, including 29 admissions due to cardiac arrhythmia and 14 admissions due to major bleeding. Using a true alarm window of 14 days prior to the admission date, the algorithm detected 59 and 79% of unscheduled admissions due to cardiac arrhythmia and major bleeding, respectively, with a false alarm rate of 2%. CONCLUSION: The proposed algorithm showed that the personalized algorithm is a viable approach to early identify cardiac arrhythmia and major bleeding by monitoring HM3 pump parameters. External validation is needed and integration with other clinical parameters could potentially improve the predictive value. In addition, the algorithm can be further enhanced using continuous data

    Developing a personalized remote patient monitoring algorithm: a proof-of-concept in heart failure

    Get PDF
    AIMS: Non-invasive remote patient monitoring is an increasingly popular technique to aid clinicians in the early detection of worsening heart failure (HF) alongside regular follow-ups. However, previous studies have shown mixed results in the performance of such systems. Therefore, we developed and evaluated a personalized monitoring algorithm aimed at increasing positive-predictive-value (PPV) (i.e. alarm quality) and compared performance with simple rule-of-thumb and moving average convergence-divergence algorithms (MACD). METHODS AND RESULTS: In this proof-of-concept study, the developed algorithm was applied to retrospective data of daily bodyweight, heart rate, and systolic blood pressure of 74 HF-patients with a median observation period of 327 days (IQR: 183 days), during which 31 patients experienced 64 clinical worsening HF episodes. The algorithm combined information on both the monitored patients and a group of stable HF patients, and is increasingly personalized over time, using linear mixed-effect modelling and statistical process control charts. Optimized on alarm quality, heart rate showed the highest PPV (Personalized: 92%, MACD: 2%, Rule-of-thumb: 7%) with an F1 score of (Personalized: 28%, MACD: 6%, Rule-of-thumb: 8%). Bodyweight demonstrated the lowest PPV (Personalized: 16%, MACD: 0%, Rule-of-thumb: 6%) and F1 score (Personalized: 10%, MACD: 3%, Rule-of-thumb: 7%) overall compared methods. CONCLUSION: The personalized algorithm with flexible patient-tailored thresholds led to higher PPV, and performance was more sensitive compared to common simple monitoring methods (rule-of-thumb and MACD). However, many episodes of worsening HF remained undetected. Heart rate and systolic blood pressure monitoring outperformed bodyweight in predicting worsening HF. The algorithm source code is publicly available for future validation and improvement

    Developing a personalized remote patient monitoring algorithm: a proof-of-concept in heart failure

    Get PDF
    AIMS: Non-invasive remote patient monitoring is an increasingly popular technique to aid clinicians in the early detection of worsening heart failure (HF) alongside regular follow-ups. However, previous studies have shown mixed results in the performance of such systems. Therefore, we developed and evaluated a personalized monitoring algorithm aimed at increasing positive-predictive-value (PPV) (i.e. alarm quality) and compared performance with simple rule-of-thumb and moving average convergence-divergence algorithms (MACD). METHODS AND RESULTS: In this proof-of-concept study, the developed algorithm was applied to retrospective data of daily bodyweight, heart rate, and systolic blood pressure of 74 HF-patients with a median observation period of 327 days (IQR: 183 days), during which 31 patients experienced 64 clinical worsening HF episodes. The algorithm combined information on both the monitored patients and a group of stable HF patients, and is increasingly personalized over time, using linear mixed-effect modelling and statistical process control charts. Optimized on alarm quality, heart rate showed the highest PPV (Personalized: 92%, MACD: 2%, Rule-of-thumb: 7%) with an F1 score of (Personalized: 28%, MACD: 6%, Rule-of-thumb: 8%). Bodyweight demonstrated the lowest PPV (Personalized: 16%, MACD: 0%, Rule-of-thumb: 6%) and F1 score (Personalized: 10%, MACD: 3%, Rule-of-thumb: 7%) overall compared methods. CONCLUSION: The personalized algorithm with flexible patient-tailored thresholds led to higher PPV, and performance was more sensitive compared to common simple monitoring methods (rule-of-thumb and MACD). However, many episodes of worsening HF remained undetected. Heart rate and systolic blood pressure monitoring outperformed bodyweight in predicting worsening HF. The algorithm source code is publicly available for future validation and improvement

    Identifying patients at risk: multi-centre comparison of HeartMate 3 and HeartWare left ventricular assist devices

    Get PDF
    Aims: Since the withdrawal of HeartWare (HVAD) from the global market, there is an ongoing discussion if and which patients require prophylactically exchange for a HeartMate 3 (HM3). Therefore, it is important to study outcome differences between HVAD and HM3 patients. Because centres differ in patient selection and standard of care, we performed a propensity score (PS)-based study including centres that implanted both devices and aimed to identify which HVAD patients are at highest risk. Methods and results: We performed an international multi-centre study (n = 1021) including centres that implanted HVAD and HM3. PS-matching was performed using clinical variables and the implanting centre. Survival and complications were compared. As a sensitivity analysis, PS-adjusted Cox regression was performed. Landmark analysis with conditional survival >2 years was conducted to evaluate long-term survival differences. To identify which HVAD patients may benefit from a HM3 upgrade, Cox regression using pre-operative variables and their interaction with device type was performed. Survival was significantly better for HM3 patients (P 2 years after implantation (P = 0.03). None of the pre-operative variable interactions in the Cox regression were significant. Conclusions: HM3 patients have a significantly better survival and a lower incidence of ischaemic strokes and pump thrombosis than HVAD patients. This survival difference persisted after 2 years of implantation. Additional research using post-operative variables is warranted to identify which HVAD patients need an upgrade to HM3 or expedited transplantation

    Incidence and risk factors of late right heart failure in chronic mechanical circulatory support

    Get PDF
    Background: Late right heart failure (LRHF) is a common complication during long-term left ventricular assist device (LVAD) support. We aimed to identify risk factors for LRHF after LVAD implantation. Methods: Patients undergoing primary LVAD implantation between 2006 and 2019 and surviving the perioperative period were included for this study (n = 261). Univariate Cox proportional hazards analysis was used to assess the association of clinical covariates and LRHF, stratified for device type. Variables with p < 0.10 entered the multivariable model. In a subset of patients with complete echocardiography or right catheterization data, this multivariable model was extended. Postoperative cardiopulmonary exercise test data were compared in patients with and without LRHF. Results: Nineteen percentage of patients suffered from LRHF after a median of 12 months, of which 67% required hospitalization. A history of atrial fibrillation (AF) (HR: 2.06 [1.08–3.93], p = 0.029), a higher preoperative body mass index (BMI) (HR: 1.07 [1.01–1.13], p = 0.023), and intensive care unit (ICU) duration (HR: 1.03 [1.00–1.06], p = 0.025) were independent predictors of LHRF in the multivariable model. A significant relation between the severity of tricuspid regurgitation (TR) and LRHF (HR: 1.91 [1.13–3.21], p = 0.016) was found in patients with echocardiographic data. Patients with LRHF demonstrated a lower maximal workload and peak VO2 at 6 months postoperatively. Conclusion: A history of AF, BMI, and longer ICU stay may help identify patients at high risk for LRHF. Severity of TR was significantly related to LRHF in a subset of patients
    corecore