129 research outputs found

    Allergen particle binding by human primary bronchial epithelial cells is modulated by surfactant protein D

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. Our previous work demonstrated that SP-D increases the uptake of SPP by alveolar macrophages. In the present study, we investigated the uptake of SPP in human primary epithelial cells and the potential modulation by SP-D. The patho-physiological consequence was evaluated by measurement of pro-inflammatory mediators.</p> <p>Methods</p> <p>SPP were isolated from timothy grass and subsequently fluorescently labelled. Human primary bronchial epithelial cells were incubated with SPP or polystyrene particles (PP) in the presence and absence of surfactant protein D. In addition, different sizes and surface charges of the PP were studied. Particle uptake was evaluated by flow cytometry and confocal microscopy. Soluble mediators were measured by enzyme linked immunosorbent assay or bead array.</p> <p>Results</p> <p>SPP were taken up by primary epithelial cells in a dose dependent manner. This uptake was coincided with secretion of Interleukin (IL)-8. SP-D increased the fraction of bronchial epithelial cells that bound SPP but not the fraction of cells that internalized SPP. SPP-induced secretion of IL-8 was further increased by SP-D. PP were bound and internalized by epithelial cells but this was not modulated by SP-D.</p> <p>Conclusions</p> <p>Epithelial cells bind and internalize SPP and PP which leads to increased IL-8 secretion. SP-D promotes attachment of SPP to epithelial cells and may thus be involved in the inflammatory response to inhaled allergen.</p

    Hybrid Shell Engineering of Animal Cells for Immune Protections and Regulation of Drug Delivery: Towards the Design of “Artificial Organs”

    Get PDF
    BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient

    The Neuropathology Of Chronic Relapsing Experimental Allergic Encephalomyelitis Induced In The Lewis Rat By Inoculation With Whole Spinal Cord And Treatment With Cyclosporin A

    Get PDF
    Chronic relapsing experimental allergic encephalomyelitis was induced in Lewis rats by inoculation with guinea-pig spinal cord and complete Freund's adjuvant followed by treatment with low-dose cyclosporin A. In most animals, tail and limb weakness developed in a relapsing remitting pattern but in some these signs were persistent or progressive from onset. Histological studies during the early stages of clinically active disease ( 28 days after inoculation) had extensive spinal cord demyelination but minimal PNS demyelination. In these animals, large plaques of demyelination with gliosis and prominent plasma cells occurred particularly in the thoracic spinal cord, and lesions of different ages were present within the spinal cord. CNS and PNS remyelination with oligodendocytes and Schwann cells respectively was present in all animals studied later than 18 days after inoculation (the time of the first remission, if it occurred). In both early and late clinically active disease electron microscopy revealed macrophages invading and destroying CNS myelin sheaths. Active demyelination was sometimes found in regions of CNS remyelination, suggesting that remyelinated fibres were being attacked. Axonal degeneration occurred in the spinal cord. During clinical remission there was CNS and PNS remyelination and much less inflammation; however active demyelination still occurred to a limited degree

    Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics

    No full text
    We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the 4H3 half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted 5S1 conformation and the 4H3 half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted 3E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.NRC publication: Ye
    • …
    corecore