74 research outputs found
Interaction of Thalassemia and Hb Variants in Southeast Asia: Genotype-Phenotype Relationship
Thalassemia and hemoglobinopathies are characterized by globin gene mutations affecting the production of quantitative and structural defects of the globin chain. α-Thalassemia, β-thalassemia, hemoglobin E (Hb E), and hemoglobin Constant Spring (Hb CS) are very common in Southeast Asian countries. Complex interactions of thalassemia and Hb variants are also common and affect the thalassemia diagnosis with several techniques including Hb typing and DNA analysis. A family study (family pedigree) is required in the proband with a complex interaction of several globin gene defects with rare types. Homozygous β-thalassemia, Hb E/β-thalassemia, and Hb Bart’s hydrops fetalis are severe thalassemia and these diseases have been concerned and included in the prevention and control program in several countries. Understanding the genotype-phenotype could help with the proper laboratory tests, genetic counseling, and effective treatment for the patients
A systematic review and meta-analysis of the global prevalence and relationships among Burkholderia pseudomallei sequence types isolated from humans, animals, and the environment
Background and Aim: Burkholderia pseudomallei, a highly pathogenic bacterium responsible for melioidosis, exhibits ecological ubiquity and thrives within soil and water reservoirs, posing significant infection risks to humans and animals through direct contact. The aim of this study was to elucidate the genetic diversity and prevalence patterns of B. pseudomallei sequence types (STs) across a global spectrum and to understand the relationships between strains isolated from different sources.
Materials and Methods: We performed a systematic review and meta-analysis in this study. Extensive research was carried out across three comprehensive databases, including PubMed, Scopus, and ScienceDirect with data collected from 1924 to 2023.
Results: A total of 40 carefully selected articles contributed 2737 B. pseudomallei isolates attributed to 729 distinct STs and were incorporated into the systematic review. Among these, ST46 emerged as the most prominent, featuring in 35% of the articles and demonstrating a dominant prevalence, particularly within Southeast Asia. Moreover, ST51 consistently appeared across human, animal, and environmental studies. Subsequently, we performed a meta-analysis, focusing on nine specific STs: ST46, ST51, ST54, ST70, ST84, ST109, ST289, ST325, and ST376. Surprisingly, no statistically significant differences in their pooled prevalence proportions were observed across these compartments for ST46, ST70, ST289, ST325, and ST376 (all p > 0.69). Conversely, the remaining STs, including ST51, ST54, ST84, and ST109, displayed notable variations in their prevalence among the three domains (all p < 0.04). Notably, the pooled prevalence of ST51 in animals and environmental samples surpassed that found in human isolates (p < 0.01).
Conclusion: To the best of our knowledge, this study is the first systematic review and meta-analysis to investigate the intricate relationships between STs and their sources and contributes significantly to our understanding of B. pseudomallei diversity within the One Health framework
Disease-Associated Mutations That Alter the RNA Structural Ensemble
Genome-wide association studies (GWAS) often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs) from the Human Gene Mutation Database (HGMD) that map to the untranslated regions (UTRs) of a gene. Rather than using minimum free energy approaches (e.g. mFold), we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, β-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD), and Hypertension), we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5′ UTRs of FTL and RB1) SNP–induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a “RiboSNitch,” that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble
Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice
We thank Sarah Haigh, Ada Kane, Nicole Reuter, David Carey, and Marilyn Perry Carey for dedicated and expert technical assistance and Cloret Carl for assistance with preparation of the manuscript.This work was supported by grants from the National Institutes of Health, R01 DK-52962, (SPP, Boston University), R41 HL-105816 (SPP, Phoenicia BioSciences), and R42 HL-110727 (Phoenicia BioSciences), 2 P40 ODO010988-16 (GLW, University of Oklahoma) and UL1-TR000157 (RFW, University of Oklahoma). SMN was supported by P50 HL-118006. The funders had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.Yeshttp://www.plosone.org/static/editorial#pee
Interaction of Thalassemia and Hb Variants in Southeast Asia: Genotype-Phenotype Relationship
Thalassemia and hemoglobinopathies are characterized by globin gene mutations affecting the production of quantitative and structural defects of the globin chain. α-Thalassemia, β-thalassemia, hemoglobin E (Hb E), and hemoglobin Constant Spring (Hb CS) are very common in Southeast Asian countries. Complex interactions of thalassemia and Hb variants are also common and affect the thalassemia diagnosis with several techniques including Hb typing and DNA analysis. A family study (family pedigree) is required in the proband with a complex interaction of several globin gene defects with rare types. Homozygous β-thalassemia, Hb E/β-thalassemia, and Hb Bart’s hydrops fetalis are severe thalassemia and these diseases have been concerned and included in the prevention and control program in several countries. Understanding the genotype-phenotype could help with the proper laboratory tests, genetic counseling, and effective treatment for the patients.</jats:p
Simultaneous Characterization of Deletional and Nondeletional Globin Gene Mutations by Multiplex Real-Time-Polymerase Chain Reaction and High-Resolution Melting Curve Analysis
Prevalence of familial hypercholesterolemia among the southern Thai population: A preliminary study
Abstract
BackgroundFamilial hypercholesterolemia (FH) is an autosomal dominant disease. The prevalence of FH among the Thai population has not been reported. This study investigated the prevalence of FH by using the low-density lipoprotein cholesterol (LDL-C) cutoff of the Dutch Lipid Clinic Network (DLCN), as well as the LDL-C cutoff of the US Make Early Diagnosis to Prevent Early Deaths (MEDPED) criteria.MethodsThis retrospective study used health checkup data from 2015 from the southern Thai population. A total of 1,480 participants (335 males and 1,145 females) aged 18–94-years-old from southern Thailand were enrolled in this study. Anthropometric, demographic, and biochemical data were measured. Additionally, FH was defined by using the DLCN and the US MEDPED criteria.ResultsWith the use of the DLCN, 7 subjects were identified as having probable FH, and the estimated prevalence of FH was 0.47% (1:211). By using the US MEDPED, 6 subjects were identified as having definite FH, and the estimated prevalence of FH was 0.41% (1:247). Most of the subjects with probable FH (71.43%) and definite FH (83.33%), as defined by the DLCN and the US MEDPED, respectively, did not take the lipid-lowering drug.ConclusionsThe prevalence of FH among the population in southern Thailand was between 1:211-1:247. Most FH subjects in Thailand may be underdiagnosed and undertreated. Thus, the early detection and treatment of FH should be implemented to prevent the development of cardiovascular disease.</jats:p
Compound Heterozygote for a Novel Elongated C-Terminal β-Globin Variant (<i>HBB</i>: c.364delG) and Hb E (<i>HBB</i>: c.79G>A) with Heterozygous α-Thalassemia-2
Association of vitamin D receptor gene polymorphisms with serum 25(OH)D levels and metabolic syndrome in Thai population
- …
