35 research outputs found

    Distinct efficacy of HIV-1 entry inhibitors to prevent cell-to-cell transfer of R5 and X4 viruses across a human placental trophoblast barrier in a reconstitution model in vitro

    Get PDF
    <p>Abstract</p> <p>Background and methods</p> <p>HIV-1 cell-to-cell transmission is more efficient than infection of permissive cells with cell-free particles. The potency of HIV-1 entry inhibitors to inhibit such transmission is not well known. Herein, we evaluated the efficacy of this new class of antiretrovirals to block cell-to-cell transmission of HIV-1 in a model of reconstitution of the human placental trophoblast barrier <it>in vitro</it>.</p> <p>Results</p> <p>Our data show that CCR5 antagonists and T20 inhibit the passage of the virus across the BeWo cell monolayer in contact with PBMCs infected with an R5 (Ba-L) and a dualtropic (A204) HIV-1 with IC50s in the range of 100 – 5,000 nM for TAK779; 90 to 15,000 nM for SCH-350581 and 3,000 to 20,000 nM for T20. The CXCR4 antagonist AMD3100 is also effective against X4 HIV-1 infected PBMCs in our model with IC50 comprised between 4 nM and 640 nM. HIV-1 entry inhibitors are less efficient to block cell-to-cell virus transmission than cell-free HIV-1 infection of PBMCs and CCR5 antagonists do not prevent PBMC infection by dual tropic HIV-1 in contrast to cell-to-cell infection in our model.</p> <p>Surprisingly, T20 (and C34) do not block cell-to-cell transmission of X4 HIV-1 but, rather, increase 80 to 140 fold, compared to control without drug, the passage of the virus across the trophoblast barrier. Additional experiments suggest that the effect of T20 on BeWo/PBMC-X4 HIV-1 is due to an increase of effector-target cells fusion.</p> <p>Conclusion</p> <p>Our results support further evaluation of HIV-1 coreceptor antagonists, alone or combined to other antiretrovirals, in a perspective of prevention but warn on the use of T20 in patients bearing X4 HIV-1 at risk of transmission.</p

    Antigen-Presenting Cells Represent Targets for R5 HIV-1 Infection in the First Trimester Pregnancy Uterine Mucosa

    Get PDF
    BACKGROUND: During the first trimester of pregnancy, HIV-1 mother-to-child transmission is relatively rare despite the permissivity of placental cells to cell-to-cell HIV-1 infection. The placenta interacts directly with maternal uterine cells (decidual cells) but the physiological role of the decidua in the control of HIV-1 transmission and whether decidua could be a source of infected cells is unknown. METHODOLOGY/PRINCIPAL FINDINGS: To answer to this question, decidual mononuclear cells were exposed to HIV-1 in vitro. Decidual cells were shown to be more susceptible to infection by an R5 HIV-1, as compared to an X4 HIV-1. Infected cells were identified by flow cytometry analysis. The results showed that CD14(+) cells were the main targets of HIV-1 infection in the decidua. These infected CD14(+) cells expressed DC-SIGN, CD11b, CD11c, the Fc gamma receptor CD16, CD32 and CD64, classical MHC class-I and class-II and maturation and activation molecules CD83, CD80 and CD86. The permissivity of decidual tissue was also evaluated by histoculture. Decidual tissue was not infected by X4 HIV-1 but was permissive to R5 HIV-1. Different profiles of infection were observed depending on tissue localization. CONCLUSIONS/SIGNIFICANCE: The presence of HIV-1 target cells in the decidua in vitro and the low rate of in utero mother-to-child transmission during the first trimester of pregnancy suggest that a natural control occurs in vivo limiting cell-to-cell infection of the placenta and consequently infection of the fetus

    Seminal Plasma Exposures Strengthen Vaccine Responses in the Female Reproductive Tract Mucosae

    Get PDF
    HIV-1 sexual transmission occurs mainly via mucosal semen exposures. In the female reproductive tract (FRT), seminal plasma (SP) induces physiological modifications, including inflammation. An effective HIV-1 vaccine should elicit mucosal immunity, however, modifications of vaccine responses by the local environment remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized the impact of HIV-1+ SP intravaginal exposure on the local immune responses of non-human primates. Multiple HIV-1+ SP exposures did not impact the anti-MVA antibody responses. However, SP exposures revealed an anti-MVA responses mediated by CD4+ T cells, which was not observed in the control group. Furthermore, the frequency and the quality of specific anti-MVA CD8+ T cell responses increased in the FRT exposed to SP. Multi-parameter approaches clearly identified the cervix as the most impacted compartment in the FRT. SP exposures induced a local cell recruitment of antigen presenting cells, especially CD11c+ cells, and CD8+ T cell recruitment in the FRT draining lymph nodes. CD11c+ cell recruitment was associated with upregulation of inflammation-related gene expression after SP exposures in the cervix. We thus highlight the fact that physiological conditions, such as SP exposures, should be taken into consideration to test and to improve vaccine efficacy against HIV-1 and other sexually transmitted infections

    Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface

    Get PDF
    International audienceBackgroundMaternofetal transmission (MFT) of HIV-1 is relatively rare during the first trimester of pregnancy despite the permissivity of placental cells for cell-to-cell HIV-1 infection. Invasive placental cells interact directly with decidual cells of the uterine mucosa during the first months of pregnancy, but the role of the decidua in the control of HIV-1 transmission is unknown.ResultsWe found that decidual mononuclear cells naturally produce low levels of IL-10, IL-12, IL-15, TNF-α, IFN-α, IFN-γ and CXCL-12 (SDF-1), and large amounts of CCL-2 (MCP1), CCL-3 (MIP-1α), CCL-4 (MIP-1β), CCL-5 (Rantes), CXCL-10 (IP-10), IL-6 and IL-8. CCL-3 and CCL-4 levels were significantly upregulated by in vitro infection with R5 HIV-1 but not X4. Decidual CD14+ antigen presenting cells were the main CCL-3 and CCL-4 producers among decidual leukocytes. R5 and X4 HIV-1 infection was inhibited by decidual cell culture supernatants in vitro. Using HIV-1 pseudotypes, we found that inhibition of the HIV-1 entry step was inhibited by decidual soluble factors.ConclusionOur findings show that decidual innate immunity (soluble factors) is involved in the control of HIV-1 infection at the maternofetal interface. The decidua could thus serve as a mucosal model for identifying correlates of protection against HIV-1 infection
    corecore