6 research outputs found

    Insulators at Fractional Fillings in Twisted Bilayer Graphene Partially Aligned to Hexagonal Boron Nitride

    Full text link
    At partial fillings of its flat electronic bands, magic-angle twisted bilayer graphene (MATBG) hosts a rich variety of competing correlated phases that show sample to sample variations. Divergent phase diagrams in MATBG are often attributed to the sublattice polarization energy scale, tuned by the degree of alignment of the hexagonal boron nitride (hBN) substrates typically used in van der Waals devices. Unaligned MATBG exhibits unconventional superconductivity and correlated insulating phases, while nearly perfectly aligned MATBG/hBN exhibits zero-field Chern insulating phases and lacks superconductivity. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) to observe gapped phases at partial fillings of the flat bands of MATBG in a new intermediate regime of sublattice polarization, observed when MATBG is only partially aligned (θGr−hBN\theta_{Gr-hBN} ≈\approx 1.65∘^\circ) to the underlying hBN substrate. Under this condition, MATBG hosts not only phenomena that naturally interpolate between the two sublattice potential limits, but also unexpected gapped phases absent in either of these limits. At charge neutrality, we observe an insulating phase with a small energy gap (Δ\Delta < 5 meV) likely related to weak sublattice symmetry breaking from the hBN substrate. In addition, we observe new gapped phases near fractional fillings ν\nu = ±1/3\pm 1/3 and ν\nu = ±1/6\pm 1/6, which have not been previously observed in MATBG. Importantly, energy-resolved STS unambiguously identifies these fractional filling states to be of single-particle origin, possibly a result of the super-superlattice formed by two moir\'e superlattices. Our observations emphasize the power of STS in distinguishing single-particle gapped phases from many-body gapped phases in situations that could be easily confused in electrical transport measurements.Comment: 4 figure

    Quantum textures of the many-body wavefunctions in magic-angle graphene

    Full text link
    Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that often reflect electronic correlation effects, broken symmetries, and novel collective excitations. A wide range of quantum phases has been discovered in MATBG, including correlated insulating, unconventional superconducting, and magnetic topological phases. The lack of microscopic information, including precise knowledge of possible broken symmetries, has thus far hampered our understanding of MATBG's correlated phases. Here we use high-resolution scanning tunneling microscopy to directly probe the wavefunctions of the correlated phases in MATBG. The squares of the wavefunctions of gapped phases, including those of the correlated insulators, pseudogap, and superconducting phases, show distinct patterns of broken symmetry with a 3\sqrt{3} x 3\sqrt{3} super-periodicity on the graphene atomic lattice that has a complex spatial dependence on the moir\'e superlattice scale. We introduce a symmetry-based analysis to describe our measurements of the wavefunctions of MATBG's correlated phases with a set of complex-valued local order parameters. For the correlated insulators in MATBG, at fillings of ν\nu = ±\pm 2 electrons per moir\'e unit cell relative to charge neutrality, we compare the observed quantum textures to those expected for proposed theoretical ground states. In typical MATBG devices, the textures of correlated insulators' wavefunctions closely match those of the theoretically proposed IKS order, while in ultra-low-strain samples our data has local symmetries like those of a T-IVC phase. We also study the wavefunction of MATBG's superconducting state, revealing strong signatures of intervalley coherence that can only be distinguished from those of the insulator with our phase-sensitive measurements.Comment: 5 figure

    Strong Inter-valley Electron-Phonon Coupling in Magic-Angle Twisted Bilayer Graphene

    Full text link
    The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked enormous research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, using angle-resolved photoemission spectroscopy with micrometer spatial resolution, we discover replicas of the flat bands in superconducting MATBG unaligned with its hexagonal boron nitride (hBN) substrate, which are absent in non-superconducting MATBG aligned with the hBN substrate. Crucially, the replicas are evenly spaced in energy, separated by 150 +- 15 meV, signalling the strong coupling of electrons in MATBG to a bosonic mode of this energy. By comparing our observations to simulations, the formation of replicas is attributed to the presence of strong inter-valley electron-phonon coupling to a K-point phonon mode. In total, the observation of these replica flat bands and the corresponding phonon mode in MATBG could provide important information for understanding the origin and the unusual properties of its superconducting phase.Comment: 17 pages, 4 figure

    Spectroscopy of Twisted Bilayer Graphene Correlated Insulators

    No full text
    We analytically compute the scanning tunneling microscopy (STM) signatures of integer-filled correlated ground states of the magic angle twisted bilayer graphene (TBG) narrow bands. After experimentally validating the strong-coupling approach at ±4 electrons/moiré unit cell, we consider the spatial features of the STM signal for 14 different many-body correlated states and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the Kramers IVC state and its nonchiral U (4) rotations do not exhibit any KD, while the time-reversal-symmetric IVC state does. Our results, obtained over a large range of energies and model parameters, show that the STM signal and Chern number of a state can be used to uniquely determine the nature of the TBG ground state
    corecore