78 research outputs found

    A High-Performance Rechargeable Mg(2+)/Li(+) Hybrid Battery Using One-Dimensional Mesoporous TiO2(B) Nanoflakes as the Cathode.

    Full text link
    Mg(2+)/Li(+) hybrid batteries have recently been constructed combining a Mg anode, a Li(+)-intercalation electrode, and an electrolyte containing both Mg(2+) and Li(+). These batteries have been reported to outperform all the previously reported magnesium batteries in terms of specific capacity, cycling stability, and rate capability. Herein, we report the outstanding electrochemical performance of Mg(2+)/Li(+) hybrid batteries consisting of a one-dimensional mesoporous TiO2(B) cathode, a Mg anode, and an electrolyte consisting of 0.5 mol L(-1) Mg(BH4)2 + 1.5 mol L(-1) LiBH4 in tetraglyme. A highly synergetic interaction between Li(+) and Mg(2+) ions toward the pseudo-capacitive reaction is proposed. The hybrid batteries show superior rate performance with 130 mAh g(-1) at 1 C and 115 mAh g(-1) at 2 C, together with excellent cyclability up to 6000 cycles

    Nanostructured NiO-C composites for lithium ion battery anode

    No full text
    Nanostructured NiO/C composite for lithium-ion battery anode was synthesized by a simple hydrothermal method and subsequent calcination. X-ray powder diffraction (XRD) showed that the composite was composed of carbon and nanocrystalline NiO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed a dense and uniform distribution of fine NiO particles, with particle sizes ranging from 7-20 nm, within the carbon matrix. The electrochemical results showed that NiO/C nanocomposite could achieve 792.0 mAh/g reversible capacity and 75.5% initial coulombic efficiency, and 58.1% capacity retention after 40 cycles at a current density of 60 mA/g in the voltage range of 0.01-3.0 V
    corecore