2 research outputs found
An adapted typology of tree-related microhabitats including tropical forests
Tree-related microhabitats (TreMs) describe the microhabitats that a tree can provide for a multitude of other taxonomic groups and have been proposed as an important indicator for forest biodiversity (Asbeck et al., 2021). So far, the focus of TreM studies has been on temperate forests, although many trees in the tropics harbour exceptionally high numbers of TreMs. In this study, TreMs in the lowland tropical forests of the Choco (Ecuador) and in the mountain tropical forests of Mount Kilimanjaro (Tanzania) were surveyed. Our results extend the existing typology of TreMs of Larrieu et al. (2018) to include tropical forests and enabled a comparison of the relative recordings and diversity of TreMs between tropical and temperate forests. A new TreM form, Root formations, and three new TreM groups, concavities build by fruits or leaves, dendrotelms, and root formations, were established. In total, 15 new TreM types in five different TreM groups were specified. The relative recordings of most TreMs were similar between tropical and temperate forests. However, ivy and lianas, and ferns were more common in the lowland rainforest than in temperate forests, and bark microsoil, limb breakage, and foliose and fruticose lichens in tropical montane forest than in lowland rainforest. Mountain tropical forests hosted the highest diversity for common and dominant TreM types, and lowland tropical forest the highest diversity for rare TreMs. Our extended typology of tree-related microhabitats can support studies of forest-dwelling biodiversity in tropical forests. Specifically, given the ongoing threat to tropical forests, TreMs can serve as an additional tool allowing rapid assessments of biodiversity in these hyperdiverse ecosystems
Reassembly of a tropical rainforest ecosystem: a new chronosequence in the Ecuadorian Chocó tested with the recovery of tree attributes
From hunting and foraging to clearing land for agriculture, humans modify forest biodiversity, landscapes, and climate. Forests constantly undergo disturbance–recovery dynamics and understanding them is a major objective of ecologists and conservationists. Chronosequences are a useful tool for understanding global restoration efforts. They represent a space-for-time substitution approach suited for the quantification of the resistance of ecosystem properties to withstand disturbance and the resilience of these properties until reaching pre-disturbance levels. Here we introduce a newly established chronosequence with 62 plots (50 ⍰ 50 m) in active cacao plantations and pastures, early and late regeneration, and mature old-growth forests, across a 200 km2 area in the extremely wet Chocó rainforest. Our chronosequence covers by far the largest total area of plots compared to others in the Neotropics. Plots ranged from 159–615 masl in a forested landscape with 74 ± 2.8 % forest cover within a 1-km radius including substantial old-growth forest cover. Land-use legacy and regeneration time were not confounded by elevation. We tested how six forest structure variables (maximum tree height and DBH, basal area, number of stems, vertical vegetation heterogeneity, and light availability), aboveground biomass (AGB), and rarefied tree species richness change along our chronosequence. Forest structure variables, AGB, and tree species richness increased with regeneration time and are predicted to reach similar levels to those in old-growth forests after ca. 30–116, 202, and 108 yrs, respectively. Compared to previous work in the Neotropics, old-growth forests in Canandé accumulate high AGB that takes one of the largest time spans reported until total recovery. Our chronosequence comprises one of the largest tree species pools, covers the largest total area of regenerating and old-growth forests, and has higher forest cover than other Neotropical chronosequences. Hence, our chronosequence can be used to determine the time for recovery and stability (resistance and resilience) of different taxa and ecosystem functions, including species interaction networks. This integrative effort will ultimately help to understand how one of the most diverse forests on the planet recovers from large-scale disturbances