7 research outputs found

    Computational studies of mycobacterium tuberculosis L, d-transpeptidase2.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Tuberculosis (TB) is still one of the most highly elusive lethal transmittable diseases to eradicate and persist to be a major threat to public health due to emergence of drug resistance. Drug-resistant is steadily increasing worldwide, therefore, there is an urgent need for development of improved efficacious antibiotics and novel drug targets to successfully contain the disease. Peptidoglycan layer (PG) is the major attribute in bacterial cell envelope and is essential for protection and growth in all bacterial species including Mycobacterium tuberculosis(Mtb). The biosynthesis pathway for PG is extremely intricate and involves numerous interconnected metabolites such as N-acetylmuramic(NAM) acid and N-acetylglucosamine(NAG), that are required during transpeptidation. These two sugar molecules are linked together by a β (1-4) glycosidic bond and the NAM attaches 3-5 amino acid peptide stems. Consequently, the peptidoglycan strands are cross linked by transpeptidases, namely D, D- and L, D-transpeptidases, forming crucial 4→3 and 3→3 cross-linkages respectively. Both D, D- and L, D-transpeptidases need to be inhibited concomitantly to eradicate the bacterium. L, D-transpeptidase 2 (LdtMt2) is one of the paralogs that is essential for Mtb growth, cell morphology and virulence during the chronic stage of the disease. This paralog has major influence in drug resistance and persistence of tuberculosis. The traditional β-lactam family of antibiotics have been reported to be effective against Mtb following the inactivation of β-lactamases (BlaC) known to rapidly hydrolyze the core β-lactam ring. The classic penicillins inhibit D, D-transpeptidases, while L, D transpeptidases are blocked by carbapenems. Despite several studies in this field, to the best of our knowledge, limited attention has been paid to the inhibition mechanism of LdtMt2 using carbapenem derivatives. In this regard, we need to explore reliable alternative strategies that are most cost-effective in terms of investigating the interactions of FDA approved carbapenems against Mtb L, D-Transpeptidases and study the role of explicit water molecule confined in the active site. As a result, computational chemistry has provided the possibility to sightsee and investigate this problem with relatively cost effective computational techniques. In this thesis, we applied a hybrid quantum mechanics and molecular mechanics techniques (QM:MM), Our own N-layered Integrated molecular Orbital and Molecular Mechanics (ONIOM) approach, to investigate the binding interaction energies of carbapenems (biapenem, imipenem, meropenem and tebipenem) against L, D-transpeptidase 2. Furthermore, the role of explicit water molecule confined in the active site was also explored using the same hybrid method to ascertain the nature of binding interaction energies of carbapenems against LdtMt2. In all the investigated carbapenem─LdtMt2 complexes, the carbapenems and the catalytic active site residues of LdtMt2 (Cys205, His187, Ser188, His203 and Asn207) were treated at QM (B3LYP/6-31+G(d)) level of theory whereas the remaining part of the complexes were treated at MM level (AMBER force field). The explicit water molecules near the carbapenems were considered and treated at QM as well. The obtained findings of Gibbs free energy (G), enthalpy (H) and entropy (S) for all studied complexes showed that the carbapenems exhibit reasonable binding interactions towards LdtMt2. This can be attributed by the structural dissimilarities of the carbapenems side chain which significantly induce conformational changes in the LdtMt2. In comparison, the binding free energy calculations of the model system with explicit water molecule yielded significant binding interaction energies. The QTAIM and NBO results confirmed the nature of binding free energies that the topological properties of atoms in molecules and the delocalization of electrons are from a bonding to antibonding orbitals in hydrogen bond interactions and this has enhanced the stability of carbapenem―LdtMt2 complexes. We believe that molecular insight of the carbapenems binding to LdtMt2 and the role of explicit solvent will enable us to understand the inhibition mechanisms

    Molecular insight on the non-covalent interactions between carbapenems and L,D-transpeptidase 2 from Mycobacterium tuberculosis: ONIOM study

    Get PDF
    Tuberculosis remains a dreadful disease that has claimed many human lives worldwide and elimination of the causative agent Mycobacterium tuberculosis also remains elusive. Multidrug-resistant TB is rapidly increasing worldwide; therefore, there is an urgent need for improving the current antibiotics and novel drug targets to successfully curb the TB burden. L,D-Transpeptidase 2 is an essential protein in Mtb that is responsible for virulence and growth during the chronic stage of the disease. Both D,D- and L,D-transpeptidases are inhibited concurrently to eradicate the bacterium. It was recently discovered that classic penicillins only inhibit D,D-transpeptidases, while L,D-transpeptidases are blocked by carbapenems. This has contributed to drug resistance and persistence of tuberculosis. Herein, a hybrid two-layered ONIOM (B3LYP/6-31G+(d): AMBER) model was used to extensively investigate the binding interactions of LdtMt2 complexed with four carbapenems (biapenem, imipenem, meropenem, and tebipenem) to ascertain molecular insight of the drug-enzyme complexation event. In the studied complexes, the carbapenems together with catalytic triad active site residues of LdtMt2 (His187, Ser188 and Cys205) were treated at with QM [B3LYP/6-31+G(d)], while the remaining part of the complexes were treated at MM level (AMBER force field). The resulting Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) for all complexes showed that the carbapenems exhibit reasonable binding interactions towards LdtMt2. Increasing the number of amino acid residues that form hydrogen bond interactions in the QM layer showed significant impact in binding interaction energy differences and the stabilities of the carbapenems inside the active pocket of LdtMt2. The theoretical binding free energies obtained in this study reflect the same trend of the experimental observations. The electrostatic, hydrogen bonding and Van der Waals interactions between the carbapenems and LdtMt2 were also assessed. To further examine the nature of intermolecular interactions for carbapenem–LdtMt2 complexes, AIM and NBO analysis were performed for the QM region (carbapenems and the active residues of LdtMt2) of the complexes. These analyses revealed that the hydrogen bond interactions and charge transfer from the bonding to anti-bonding orbitals between catalytic residues of the enzyme and selected ligands enhances the binding and stability of carbapenem–LdtMt2 complexes.The College of Health Sciences (CHS), Aspen Pharmacare, MRC and NRF.https://link.springer.com/journal/108222019-06-01hj2018Chemistr

    Neutralizing Carbapenem Resistance by Co-Administering Meropenem with Novel β-Lactam-Metallo-β-Lactamase Inhibitors

    No full text
    Virulent Enterobacterale strains expressing serine and metallo-β-lactamases (MBL) genes have emerged responsible for conferring resistance to hard-to-treat infectious diseases. One strategy that exists is to develop β-lactamase inhibitors to counter this resistance. Currently, serine β-lactamase inhibitors (SBLIs) are in therapeutic use. However, an urgent global need for clinical metallo-β-lactamase inhibitors (MBLIs) has become dire. To address this problem, this study evaluated BP2, a novel beta-lactam-derived β-lactamase inhibitor, co-administered with meropenem. According to the antimicrobial susceptibility results, BP2 potentiates the synergistic activity of meropenem to a minimum inhibitory concentration (MIC) of ≤1 mg/L. In addition, BP2 is bactericidal over 24 h and safe to administer at the selected concentrations. Enzyme inhibition kinetics showed that BP2 had an apparent inhibitory constant (Kiapp) of 35.3 µM and 30.9 µM against New Delhi Metallo-β-lactamase (NDM-1) and Verona Integron-encoded Metallo-β-lactamase (VIM-2), respectively. BP2 did not interact with glyoxylase II enzyme up to 500 µM, indicating specific (MBL) binding. In a murine infection model, BP2 co-administered with meropenem was efficacious, observed by the >3 log10 reduction in K. pneumoniae NDM cfu/thigh. Given the promising pre-clinical results, BP2 is a suitable candidate for further research and development as an (MBLI)

    Identification of small molecule antivirals against HTLV-1 by targeting the hDLG1-Tax-1 protein-protein interaction.

    Full text link
    peer reviewedHuman T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability. We have solved the structures of the PDZ binding motif (PBM) of Tax-1 in complex with the PDZ1 and PDZ2 domains of hDLG1 and assessed the binding of 10 million molecules by virtual screening. Among the 19 experimentally confirmed compounds, one systematically inhibited the Tax-1-hDLG1 interaction in different biophysical and cellular assays, as well as HTLV-1 cell-to-cell transmission in a T-cell model. Thus, our work demonstrates that interactions involving Tax-1 PDZ-domains are amenable to small-molecule inhibition, which provides a framework for the design of targeted therapies for HTLV-1-induced diseases
    corecore