28 research outputs found
Performance and scalability of indexed subgraph query processing methods
Graph data management systems have become very popular
as graphs are the natural data model for many applications.
One of the main problems addressed by these systems is subgraph
query processing; i.e., given a query graph, return all
graphs that contain the query. The naive method for processing
such queries is to perform a subgraph isomorphism
test against each graph in the dataset. This obviously does
not scale, as subgraph isomorphism is NP-Complete. Thus,
many indexing methods have been proposed to reduce the
number of candidate graphs that have to underpass the subgraph
isomorphism test. In this paper, we identify a set of
key factors-parameters, that influence the performance of
related methods: namely, the number of nodes per graph,
the graph density, the number of distinct labels, the number
of graphs in the dataset, and the query graph size. We then
conduct comprehensive and systematic experiments that analyze
the sensitivity of the various methods on the values of
the key parameters. Our aims are twofold: first to derive
conclusions about the algorithms’ relative performance, and,
second, to stress-test all algorithms, deriving insights as to
their scalability, and highlight how both performance and
scalability depend on the above factors. We choose six wellestablished
indexing methods, namely Grapes, CT-Index,
GraphGrepSX, gIndex, Tree+∆, and gCode, as representative
approaches of the overall design space, including the
most recent and best performing methods. We report on
their index construction time and index size, and on query
processing performance in terms of time and false positive
ratio. We employ both real and synthetic datasets. Specifi-
cally, four real datasets of different characteristics are used:
AIDS, PDBS, PCM, and PPI. In addition, we generate a
large number of synthetic graph datasets, empowering us to
systematically study the algorithms’ performance and scalability
versus the aforementioned key parameters
GraphCache: A Caching System for Graph Queries
Graph query processing is essential for graph analytics, but can be very time-consuming as it entails the NP-Complete problem of subgraph isomorphism. Traditionally, caching plays a key role in expediting query processing. We thus put forth GraphCache (GC), the first full-edged caching system for general subgraph/supergraph queries. We contribute the overall system architecture and implementation of GC. We study a number of novel graph cache replacement policies and show that different policies win over different graph datasets and/or queries; we therefore contribute a novel hybrid graph replacement policy that is always the
best or near-best performer. Moreover, we discover the related problem of cache pollution and propose a novel cache admission control mechanism to avoid cache pollution. Furthermore, we show that GC can be used as a front end, complementing any graph query processing method as a pluggable component. Currently, GC comes bundled with 3 top-performing filter-then-verify (FTV) subgraph query methods and 3 well-established direct subgraph-isomorphism (SI) algorithms - representing different categories of graph query processing research. Finally, we contribute a comprehensive performance evaluation of GC. We employ more than 6 million queries, generated using different workload generators, and executed against both real-world and synthetic graph datasets of different characteristics, quantifying the benefits and overheads, emphasizing the non-trivial lessons learned
Indexing query graphs to speedup graph query processing
Subgraph/supergraph queries although central to graph analytics, are costly as they entail the NP-Complete problem of subgraph isomorphism. We present a fresh solution, the novel principle of which is to acquire and utilize knowledge from the results of previously executed queries. Our approach, iGQ, encompasses two component subindexes to identify if a new query is a subgraph/supergraph of previously executed queries and stores related key information. iGQ comes with novel query processing and index space management algorithms, including graph replacement policies. The end result is a system that leads to significant reduction in the number of required subgraph isomorphism tests and speedups in query processing time. iGQ can be incorporated into any sub/supergraph query processing method and help improve performance. In fact, it is the only contribution that can speedup significantly both subgraph and supergraph query processing. We establish the principles of iGQ and formally prove its correctness. We have implemented iGQ and have incorporated it within three popular recent state of the art index-based graph query processing solutions. We evaluated its performance using real-world and synthetic graph datasets with different characteristics, and a number of query workloads, showcasing its benefits
Revisiting Exact kNN Query Processing with Probabilistic Data Space Transformations
The state-of-the-art approaches for scalable kNN query processing utilise big data parallel/distributed platforms (e.g., Hadoop and Spark) and storage engines (e.g, HDFS, NoSQL, etc.), upon which they build (tree based) indexing methods for efficient query processing. However, as data sizes continue to increase (nowadays it is not uncommon to reach several Petabytes), the storage cost of tree-based index structures becomes exceptionally high. In this work, we propose a novel perspective to organise multivariate (mv) datasets. The main novel idea relies on data space probabilistic transformations and derives a Space Transformation Organisation Structure (STOS) for mv data organisation. STOS facilitates query processing as if underlying datasets were uniformly distributed. This approach bears significant advantages. First, STOS enjoys a minute memory footprint that is many orders of magnitude smaller than indexes in related work. Second, the required memory, unlike related work, increases very slowly with dataset size and, thus, enjoys significantly higher scalability. Third, the STOS structure is relatively efficient to compute, outperforming traditional index building times. The new approach comes bundled with a distributed coordinator-based query processing method so that, overall, lower query processing times are achieved compared to the state-of-the-art index-based methods. We conducted extensive experimentation with real and synthetic datasets of different sizes to substantiate and quantify the performance advantages of our proposal
Revisiting exact kNN query processing with probabilistic data space transformations
The state-of-the-art approaches for scalable kNN query processing utilise big data parallel/distributed platforms (e.g., Hadoop and Spark) and storage engines (e.g, HDFS, NoSQL, etc.), upon which they build (tree based) indexing methods for effi- cient query processing. However, as data sizes continue to increase (nowadays it is not uncommon to reach several Petabytes), the storage cost of tree-based index structures becomes exceptionally high. In this work, we propose a novel perspective to organise multivariate (mv) datasets. The main novel idea relies on data space probabilistic transformations and derives a Space Transfor- mation Organisation Structure (STOS) for mv data organisation. STOS facilitates query processing as if underlying datasets were uniformly distributed. This approach bears significant advan- tages. First, STOS enjoys a minute memory footprint that is many orders of magnitude smaller than indexes in related work. Second, the required memory, unlike related work, increases very slowly with dataset size and, thus, enjoys significantly higher scalability. Third, the STOS structure is relatively efficient to compute, outperforming traditional index building times. The new approach comes bundled with a distributed coordinator- based query processing method so that, overall, lower query processing times are achieved compared to the state-of-the-art index-based methods. We conducted extensive experimentation with real and synthetic datasets of different sizes to substantiate and quantify the performance advantages of our proposal
Exploring Contextual Paradigms in Context-Aware Recommendations
Traditional recommendation systems utilise past users’ preferences to predict unknown ratings and recommend unseen items. However, as the number of choices from content providers increases, additional information, such as context, has to be included in the recommendation process to improve users’ satisfaction. Context-aware recommendation systems exploit the users’ contextual information (e.g., location, mood, company, etc.) using three main paradigms: contextual pre-filtering, contextual post-filtering, and contextual modelling. In this work, we explore these three ways of incorporating context in the recommendation pipeline, and compare them on context-aware datasets with different characteristics. The experimental evaluation showed that contextual pre-filtering and contextual modelling yield similar performance, while the post-filtering approach achieved poorer accuracy, emphasising the importance of context in producing good recommendations
Are we there yet? Estimating Training Time for Recommendation Systems
Recommendation systems (RS) are a key component of modern commercial platforms, with Collaborative Filtering (CF) based RSs being the centrepiece. Relevant research has long focused on measuring and improving the effectiveness of such CF systems, but alas their efficiency - especially with regards to their time- and resource-consuming training phase - has received little to no attention. This work is a first step in the direction of addressing this gap. To do so, we first perform a methodical study of the computational complexity of the training phase for a number of highly popular CF-based RSs, including approaches based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one schemes. Based on this, we then build a simple yet effective predictor that, given a small sample of a dataset, is able to predict training times over the complete dataset. Our systematic experimental evaluation shows that our approach outperforms state-of-the-art regression schemes by a considerable margin
GC : a graph caching system for subgraph / supergraph queries
We demonstrate a graph caching system GC for expediting subgraph/supergraph queries, which are computationally expensive due to the entailed NP-Complete subgraph isomorphism problem. Unlike existing caching systems for fast data access where each cache hit saves one disk I/O, GC reduces the computational costs due to subgraph isomorphism testing. Moreover, GC harnesses both subgraph and supergraph cache hits, extending the traditional exact-match-only hit, thus resulting in significant speedups. Furthermore, GC features dashboards for both skilled developers and general end-users; the former could investigate and experiment with alternative components/mechanisms while the latter could look into the principle of GC through a number of demonstration scenarios
Measuring Distances Among Graphs En Route To Graph Clustering
The graph data structure offers a highly expressive way of representing many real-world constructs such as social networks, chemical compounds, the world wide web, street maps, etc. In essence, any collection of entities and the relationships between them can be modelled using a graph, thus preserving more information about the real-world objects than a simple vector space model. An issue that arises when operating on collections of graphs, however, is that most statistical analysis and machine learning methods expect their input data to be in the form of multidimensional vectors, where all items can be compared with each other using well-understood metrics such as Euclidean or Manhattan distance. This paper presents a variety of approaches for computing distances between graphs with known node correspondence, with the aim of applying those measures alongside clustering algorithms to discover patterns in a given dataset. The performance of each distance measure is then evaluated through its ability to identify communities of graphs with similar features. We show that because the considered distance metrics highlight different structural properties, the method that produces the highest quality result will depend on the characteristics of the processed graph population