206 research outputs found

    The development and characterisation of porphyrin isothiocyanate–monoclonal antibody conjugates for photoimmunotherapy

    Get PDF
    A promising approach to increase the specificity of photosensitisers used in photodynamic therapy has been through conjugation to monoclonal antibodies (MAb) directed against tumour-associated antigens. Many of the conjugations performed to date have relied on the activated ester method, which can lead to impure conjugate preparations and antibody crosslinking. Here, we report the development of photosensitiser–MAb conjugates utilising two porphyrin isothiocyanates. The presence of a single reactive isothiocyanate allowed facile conjugation to MAb FSP 77 and 17.1A directed against internalising antigens, and MAb 35A7 that binds to a non-internalising antigen. The photosensitiser–MAb conjugates substituted with 1–3 mol of photosensitiser were characterised in vitro. No appreciable loss of immunoreactivity was observed and binding specificity was comparable to that of the unconjugated MAb. Substitution with photosensitiser had a minimal effect on antibody biodistribution in vivo for the majority of the conjugates, although a decreased serum half-life was observed using a cationic photosensitiser at the higher loading ratios. Tumour-to-normal tissue ratios as high as 33.5 were observed using MAb 35A7 conjugates. The internalising conjugate showed a higher level of phototoxicity as compared with the non-internalising reagent, using a cell line engineered to express both target antigens. These data demonstrate the applicability of the isothiocyanate group for the development of high-quality conjugates, and the use of internalising MAb to significantly increase the photodynamic efficiency of conjugates during photoimmunotherapy

    Potentiation of the anti-tumour effects of Photofrin®-based photodynamic therapy by localized treatment with G-CSF

    Get PDF
    Photofrin®-based photodynamic therapy (PDT) has recently been approved for palliative and curative purposes in cancer patients. It has been demonstrated that neutrophils are indispensable for its anti-tumour effectiveness. We decided to evaluate the extent of the anti-tumour effectiveness of PDT combined with administration of granulocyte colony-stimulating factor (G-CSF) as well as the influence of Photofrin®and G-CSF on the myelopoiesis and functional activity of neutrophils in mice. An intensive treatment with G-CSF significantly potentiated anti-tumour effectiveness of Photofrin®-based PDT resulting in a reduction of tumour growth and prolongation of the survival time of mice bearing two different tumours: colon-26 and Lewis lung carcinoma. Moreover, 33% of C-26-bearing mice were completely cured of their tumours after combined therapy and developed a specific and long-lasting immunity. The tumours treated with both agents contained more infiltrating neutrophils and apoptotic cells then tumours treated with either G-CSF or PDT only. Importantly, simultaneous administration of Photofrin®and G-CSF stimulated bone marrow and spleen myelopoiesis that resulted in an increased number of neutrophils demonstrating functional characteristics of activation. Potentiated anti-tumour effects of Photofrin®-based PDT combined with G-CSF observed in two murine tumour models suggest that clinical trials using this tumour therapy protocol would be worth pursuing. © 2000 Cancer Research Campaig

    CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells

    Get PDF
    Cancer survival rates decrease in the presence of disseminated disease. However, there are few therapies that are effective at eliminating the primary tumour while providing control of distant stage disease. Photodynamic therapy (PDT) is an FDA-approved modality that rapidly eliminates local tumours, resulting in cure of early disease and palliation of advanced disease. Numerous pre-clinical studies have shown that local PDT treatment of tumours enhances anti-tumour immunity. We hypothesised that enhancement of a systemic anti-tumour immune response might control the growth of tumours present outside the treatment field. To test this hypothesis we delivered PDT to subcutaneous (s.c.) tumours of mice bearing both s.c. and lung tumours and monitored the growth of the untreated lung tumours. Our results demonstrate that PDT of murine tumours provided durable inhibition of the growth of untreated lung tumours. The inhibition of the growth of tumours outside the treatment field was tumour-specific and dependent on the presence of CD8+ T cells. This inhibition was accompanied by an increase in splenic anti-tumour cytolytic activity and by an increase in CD8+ T cell infiltration into untreated tumours. Local PDT treatment led to enhanced anti-tumour immune memory that was evident 40 days after tumour treatment and was independent of CD4+ T cells. CD8+ T cell control of the growth of lung tumours present outside the treatment field following PDT was dependent upon the presence of natural killer (NK) cells. These results suggest that local PDT treatment of tumours lead to induction of an anti-tumour immune response capable of controlling the growth of tumours outside the treatment field and indicate that this modality has potential in the treatment of distant stage disease

    Peyronie's disease

    No full text

    Reply by Authors

    No full text
    • …
    corecore