60 research outputs found

    Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung

    Get PDF
    BACKGROUND: The receptor for advanced glycation end products (mRAGE) is associated with pathology in most tissues, while its soluble form (sRAGE) acts as a decoy receptor. The adult lung is unique in that it expresses high amounts of RAGE under normal conditions while other tissues express low amounts normally and up-regulate RAGE during pathologic processes. We sought to determine the regulation of the soluble and membrane isoforms of RAGE in the developing lung, and its expression under hyperoxic conditions in the neonatal lung. RESULTS: Fetal (E19), term, 4 day, 8 day and adult rat lung protein and mRNA were analyzed, as well as lungs from neonatal (0–24 hrs) 2 day and 8 day hyperoxic (95% O(2)) exposed animals. mRAGE transcripts in the adult rat lung were 23% greater than in neonatal (0–24 hrs) lungs. On the protein level, rat adult mRAGE expression was 2.2-fold higher relative to neonatal mRAGE expression, and adult sRAGE protein expression was 2-fold higher compared to neonatal sRAGE. Fetal, term, 4 day and 8 day old rats had a steady increase in both membrane and sRAGE protein expression evaluated by Western Blot and immunohistochemistry. Newborn rats exposed to chronic hyperoxia showed significantly decreased total RAGE expression compared to room air controls. CONCLUSION: Taken together, these data show that rat pulmonary RAGE expression increases with age beginning from birth, and interestingly, this increase is counteracted under hyperoxic conditions. These results support the emerging concept that RAGE plays a novel and homeostatic role in lung physiology

    Liposomal Fasudil, a Rho-Kinase Inhibitor, for Prolonged Pulmonary Preferential Vasodilation in Pulmonary Arterial Hypertension

    Get PDF
    Current pharmacological interventions for pulmonary arterial hypertension (PAH) require continuous infusions, multiple inhalations, or oral administration of drugs that act on various pathways involved in the pathogenesis of PAH. However, invasive methods of administration, short duration of action, and lack of pulmonary selectivity result in noncompliance and poor patient outcomes. In this study, we tested the hypothesis that encapsulation of an investigational anti-PAH molecule fasudil (HA-1077), a Rho-kinase inhibitor, into liposomal vesicles results in prolonged vasodilation in distal pulmonary arterioles. Liposomes were prepared by hydration and extrusion method and fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient. Liposomes were then characterized for various physicochemical properties. Optimized formulations were tested for pulmonary absorption and their pharmacological efficacy in a monocrotaline (MCT) induced rat model of PAH. The entrapment efficiency of optimized liposomal fasudil formulations was between 68.1 ± 0.8% and 73.6 ± 2.3%, and the cumulative release at 37 °C was 98–99% over a period of 5 days. Compared to intravenous (IV) fasudil, a ~ 10 fold increase in the terminal plasma half-life was observed when liposomal fasudil was administered as aerosols. The t1/2 of IV fasudil was 0.39 ± 0.12 h. and when given as liposomes via pulmonary route, the t1/2 extended to 4.71 ± 0.72 h. One h after intratracheal instillation of liposomal fasudil, mean pulmonary arterial pressure (MPAP) was reduced by 37.6 ± 5.7% and continued to decrease for about 3 h, suggesting that liposomal formulations produced pulmonary preferential vasodilation in MCT induced PAH rats. Overall, this study established the proof-of-principle that aerosolized liposomal fasudil is a feasible option for a non-invasive, controlled release and pulmonary preferential treatment of PAH

    The DNA Damage Response and HIV-Associated Pulmonary Arterial Hypertension

    No full text
    The HIV-infected population is at a dramatically increased risk of developing pulmonary arterial hypertension (PAH), a devastating and fatal cardiopulmonary disease that is rare amongst the general population. It is increasingly apparent that PAH is a disease with complex and heterogeneous cellular and molecular pathologies, and options for therapeutic intervention are limited, resulting in poor clinical outcomes for affected patients. A number of soluble HIV factors have been implicated in driving the cellular pathologies associated with PAH through perturbations of various signaling and regulatory networks of uninfected bystander cells in the pulmonary vasculature. While these mechanisms are likely numerous and multifaceted, the overlapping features of PAH cellular pathologies and the effects of viral factors on related cell types provide clues as to the potential mechanisms driving HIV-PAH etiology and progression. In this review, we discuss the link between the DNA damage response (DDR) signaling network, chronic HIV infection, and potential contributions to the development of pulmonary arterial hypertension in chronically HIV-infected individuals

    Platelet activation in experimental murine neonatal pulmonary hypertension

    Get PDF
    Serotonin (5-HT) contributes to the pathogenesis of experimental neonatal pulmonary hypertension (PH) associated with bronchopulmonary dysplasia (BPD). Platelets are the primary source of circulating 5-HT and is released upon platelet activation. Platelet transfusions are associated with neonatal mortality and increased rates of BPD. As BPD is often complicated by PH, we tested the hypothesis that circulating platelets are activated and also increased in the lungs of neonatal mice with bleomycin-induced PH associated with BPD. Newborn wild-type mice received intraperitoneal bleomycin (3 units/kg) three times weekly for 3 weeks. Platelets from mice with experimental PH exhibited increased adhesion to collagen under flow (at 300

    Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension

    No full text
    Pulmonary arterial hypertension (PAH) affects more women than men, although affected females tend to survive longer than affected males. This sex disparity in PAH is postulated to stem from the diverse roles of sex hormones in disease etiology. In animal models, estrogens appear to be implicated not only in pathologic remodeling of pulmonary arteries, but also in protection against right ventricular (RV) hypertrophy. In contrast, the male sex hormone testosterone is associated with reduced survival in male animals, where it is associated with increased RV mass, volume, and fibrosis. However, it also has a vasodilatory effect on pulmonary arteries. Furthermore, patients of both sexes show varying degrees of response to current therapies for PAH. As such, there are many gaps and contradictions regarding PAH development, progression, and therapeutic interventions in male versus female patients. Many of these questions remain unanswered, which may be due in part to lack of effective experimental models that can consistently reproduce PAH pulmonary microenvironments in their sex-specific forms. This review article summarizes the roles of estrogens and related sex hormones, immunological and genetical differences, and the benefits and limitations of existing experimental tools to fill in gaps in our understanding of the sex-based variation in PAH development and progression. Finally, we highlight the potential of a new tissue chip-based model mimicking PAH-afflicted male and female pulmonary arteries to study the sex-based differences in PAH and to develop personalized therapies based on patient sex and responsiveness to existing and new drugs

    S

    No full text

    Lung Extracellular Superoxide Dismutase Overexpression Lessens Bleomycin-Induced Pulmonary Hypertension and Vascular Remodeling

    No full text
    Interstitial lung disease is a devastating disease in humans that can be further complicated by the development of secondary pulmonary hypertension. Accumulating evidence indicates that the oxidant superoxide can contribute to the pathogenesis of both interstitial lung disease and pulmonary hypertension. We used a model of pulmonary hypertension secondary to bleomycin-induced pulmonary fibrosis to test the hypothesis that an imbalance in extracellular superoxide and its antioxidant defense, extracellular superoxide dismutase, will promote pulmonary vascular remodeling and pulmonary hypertension. We exposed transgenic mice overexpressing lung extracellular superoxide dismutase and wild-type littermates to a single dose of intratracheal bleomycin, and evaluated the mice weekly for up to 35 days. We assessed pulmonary vascular remodeling and the expression of several genes critical to lung fibrosis, as well as pulmonary hypertension and mortality. The overexpression of extracellular superoxide dismutase protected against late remodeling within the medial, adventitial, and intimal layers of the vessel wall after the administration of bleomycin, and attenuated pulmonary hypertension at the same late time point. The overexpression of extracellular superoxide dismutase also blocked the early up-regulation of two key genes in the lung known to be critical in pulmonary fibrosis and vascular remodeling, the transcription factor early growth response–1 and transforming growth factor–β. The overexpression of extracellular superoxide dismutase attenuated late pulmonary hypertension and significantly improved survival after exposure to bleomycin. These data indicate an important role for an extracellular oxidant/antioxidant imbalance in the pathogenesis of pulmonary vascular remodeling associated with secondary pulmonary hypertension attributable to bleomycin-induced lung fibrosis

    Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling

    No full text
    Although production of reactive oxygen species (ROS) such as superoxide (O2·−) has been implicated in chronic hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodeling, the transcription factors and gene targets through which ROS exert their effects have not been completely identified. We used mice overexpressing the extracellular antioxidant enzyme extracellular superoxide dismutase (EC-SOD TG) to test the hypothesis that O2·− generated in the extracellular compartment under hypoxic conditions contributes to PH through the induction of the transcription factor, early growth response-1 (Egr-1), and its downstream gene target, tissue factor (TF). We found that chronic hypoxia decreased lung EC-SOD activity and protein expression in wild-type mice, but that EC-SOD activity remained five to seven times higher in EC-SOD TG mice under hypoxic conditions. EC-SOD overexpression attenuated chronic hypoxic PH, and vascular remodeling, measured by right ventricular systolic pressures, proliferation of cells in the vessel wall, muscularization of small pulmonary vessels, and collagen deposition. EC-SOD overexpression also prevented the early hypoxia-dependent upregulation of the redox-sensitive transcription factor Egr-1 and the procoagulant protein TF. These data provide the first evidence that EC-SOD activity is disrupted in chronic hypoxia, and increased EC-SOD activity can attenuate chronic hypoxic PH by limiting the hypoxic upregulation of redox-sensitive genes
    • …
    corecore