3 research outputs found
Solid helium at high pressure: A path-integral Monte Carlo simulation
Solid helium (3He and 4He) in the hcp and fcc phases has been studied by
path-integral Monte Carlo. Simulations were carried out in the
isothermal-isobaric (NPT) ensemble at pressures up to 52 GPa. This allows one
to study the temperature and pressure dependences of isotopic effects on the
crystal volume and vibrational energy in a wide parameter range. The obtained
equation of state at room temperature agrees with available experimental data.
The kinetic energy, E_k, of solid helium is found to be larger than the
vibrational potential energy, E_p. The ratio E_k/E_p amounts to about 1.4 at
low pressures, and decreases as the applied pressure is raised, converging to
1, as in a harmonic solid. Results of these simulations have been compared with
those yielded by previous path integral simulations in the NVT ensemble. The
validity range of earlier approximations is discussed.Comment: 7 pages, 5 figure