1,955 research outputs found
Dynamic Windows Scheduling with Reallocation
We consider the Windows Scheduling problem. The problem is a restricted
version of Unit-Fractions Bin Packing, and it is also called Inventory
Replenishment in the context of Supply Chain. In brief, the problem is to
schedule the use of communication channels to clients. Each client ci is
characterized by an active cycle and a window wi. During the period of time
that any given client ci is active, there must be at least one transmission
from ci scheduled in any wi consecutive time slots, but at most one
transmission can be carried out in each channel per time slot. The goal is to
minimize the number of channels used. We extend previous online models, where
decisions are permanent, assuming that clients may be reallocated at some cost.
We assume that such cost is a constant amount paid per reallocation. That is,
we aim to minimize also the number of reallocations. We present three online
reallocation algorithms for Windows Scheduling. We evaluate experimentally
these protocols showing that, in practice, all three achieve constant amortized
reallocations with close to optimal channel usage. Our simulations also expose
interesting trade-offs between reallocations and channel usage. We introduce a
new objective function for WS with reallocations, that can be also applied to
models where reallocations are not possible. We analyze this metric for one of
the algorithms which, to the best of our knowledge, is the first online WS
protocol with theoretical guarantees that applies to scenarios where clients
may leave and the analysis is against current load rather than peak load. Using
previous results, we also observe bounds on channel usage for one of the
algorithms.Comment: 6 figure
SPEDEN: Reconstructing single particles from their diffraction patterns
Speden is a computer program that reconstructs the electron density of single
particles from their x-ray diffraction patterns, using a single-particle
adaptation of the Holographic Method in crystallography. (Szoke, A., Szoke, H.,
and Somoza, J.R., 1997. Acta Cryst. A53, 291-313.) The method, like its parent,
is unique that it does not rely on ``back'' transformation from the diffraction
pattern into real space and on interpolation within measured data. It is
designed to deal successfully with sparse, irregular, incomplete and noisy
data. It is also designed to use prior information for ensuring sensible
results and for reliable convergence. This article describes the theoretical
basis for the reconstruction algorithm, its implementation and quantitative
results of tests on synthetic and experimentally obtained data. The program
could be used for determining the structure of radiation tolerant samples and,
eventually, of large biological molecular structures without the need for
crystallization.Comment: 12 pages, 10 figure
Microbiological influences on fracture surfaces of intact mudstone and the implications for geological disposal of radioactive waste
The significance of the potential impacts of microbial activity on the transport properties of host rocks for geological repositories is an area of active research. Most recent work has focused on granitic environments. This paper describes pilot studies investigating changes in transport properties that are produced by microbial activity in sedimentary rock environments in northern Japan. For the first time, these short experiments (39 days maximum) have shown that the denitrifying bacteria, Pseudomonas denitrificans, can survive and thrive when injected into flow-through column experiments containing fractured diatomaceous mudstone and synthetic groundwater under pressurized conditions. Although there were few significant changes in the fluid chemistry, changes in the permeability of the biotic column, which can be explained by the observed biofilm formation, were quantitatively monitored. These same methodologies could also be adapted to obtain information from cores originating from a variety of geological environments including oil reservoirs, aquifers and toxic waste disposal sites to provide an understanding of the impact of microbial activity on the transport of a range of solutes, such as groundwater contaminants and gases (e.g. injected carbon dioxide)
On the Relationship Between Complex Potentials and Strings of Projection Operators
It is of interest in a variety of contexts, and in particular in the arrival
time problem, to consider the quantum state obtained through unitary evolution
of an initial state regularly interspersed with periodic projections onto the
positive -axis (pulsed measurements). Echanobe, del Campo and Muga have
given a compelling but heuristic argument that the state thus obtained is
approximately equivalent to the state obtained by evolving in the presence of a
certain complex potential of step-function form. In this paper, with the help
of the path decomposition expansion of the associated propagators, we give a
detailed derivation of this approximate equivalence. The propagator for the
complex potential is known so the bulk of the derivation consists of an
approximate evaluation of the propagator for the free particle interspersed
with periodic position projections. This approximate equivalence may be used to
show that to produce significant reflection, the projections must act at time
spacing less than 1/E, where E is the energy scale of the initial state.Comment: 29 pages, LaTex, 4 figures. Substantial revision
Behavioural compensation by drivers of a simulator when using a vision enhancement system
Technological progress is suggesting dramatic changes to the tasks of the driver, with the general aim of making driving environment safer. Before any of these technologies are implemented, empirical research is required to establish if these devices do, in fact, bring about the anticipated improvements. Initially, at least, simulated driving environments offer a means of conducting this research. The study reported here concentrates on the application of a vision enhancement (VE) system within the risk homeostasis paradigm. It was anticipated, in line with risk homeostasis theory, that drivers would compensate for the reduction in risk by increasing speed. The results support the hypothesis although, after a simulated failure of the VE system, drivers did reduce their speed due to reduced confidence in the reliability of the system
The CMS Tracker Readout Front End Driver
The Front End Driver, FED, is a 9U 400mm VME64x card designed for reading out
the Compact Muon Solenoid, CMS, silicon tracker signals transmitted by the
APV25 analogue pipeline Application Specific Integrated Circuits. The FED
receives the signals via 96 optical fibers at a total input rate of 3.4 GB/sec.
The signals are digitized and processed by applying algorithms for pedestal and
common mode noise subtraction. Algorithms that search for clusters of hits are
used to further reduce the input rate. Only the cluster data along with trigger
information of the event are transmitted to the CMS data acquisition system
using the S-LINK64 protocol at a maximum rate of 400 MB/sec. All data
processing algorithms on the FED are executed in large on-board Field
Programmable Gate Arrays. Results on the design, performance, testing and
quality control of the FED are presented and discussed
Theoretical Spectra and Atmospheres of Extrasolar Giant Planets
We present a comprehensive theory of the spectra and atmospheres of
irradiated extrasolar giant planets. We explore the dependences on stellar
type, orbital distance, cloud characteristics, planet mass, and surface
gravity. Phase-averaged spectra for specific known extrasolar giant planets
that span a wide range of the relevant parameters are calculated, plotted, and
discussed. The connection between atmospheric composition and emergent spectrum
is explored in detail. Furthermore, we calculate the effect of stellar
insolation on brown dwarfs. We review a variety of representative observational
techniques and programs for their potential for direct detection, in light of
our theoretical expectations, and we calculate planet-to-star flux ratios as a
function of wavelength. Our results suggest which spectral features are most
diagnostic of giant planet atmospheres and reveal the best bands in which to
image planets of whatever physical or orbital characteristics.Comment: 47 pages, plus 36 postscript figures; with minor revisions, accepted
to the Astrophysical Journal, May 10, 2003 issu
Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging
The Fourier inversion of phased coherent diffraction patterns offers images
without the resolution and depth-of-focus limitations of lens-based tomographic
systems. We report on our recent experimental images inverted using recent
developments in phase retrieval algorithms, and summarize efforts that led to
these accomplishments. These include ab-initio reconstruction of a
two-dimensional test pattern, infinite depth of focus image of a thick object,
and its high-resolution (~10 nm resolution) three-dimensional image.
Developments on the structural imaging of low density aerogel samples are
discussed.Comment: 5 pages, X-Ray Microscopy 2005, Himeji, Japa
- …