37 research outputs found
Recommended from our members
Phase I study of dose escalation to dominant intraprostatic lesions using high-dose-rate brachytherapy.
PurposeRadiation dose escalation for prostate cancer improves biochemical control but is limited by toxicity. Magnetic resonance spectroscopic imaging (MRSI) can define dominant intraprostatic lesions (DIL). This phase I study evaluated dose escalation to MRSI-defined DIL using high-dose-rate (HDR) brachytherapy.Material and methodsEnrollment was closed early due to low accrual. Ten patients with prostate cancer (T2a-3b, Gleason 6-9, PSA < 20) underwent pre-treatment MRSI, and eight patients had one to three DIL identified. The eight enrolled patients received external beam radiation therapy to 45 Gy and HDR brachytherapy boost to the prostate of 19 Gy in 2 fractions. MRSI images were registered to planning CT images and DIL dose-escalated up to 150% of prescription dose while maintaining normal tissue constraints. The primary endpoint was genitourinary (GU) toxicity.ResultsThe median total DIL volume was 1.31 ml (range, 0.67-6.33 ml). Median DIL boost was 130% of prescription dose (range, 110-150%). Median urethra V120 was 0.15 ml (range, 0-0.4 ml) and median rectum V75 was 0.74 ml (range, 0.1-1.0 ml). Three patients had acute grade 2 GU toxicity, and two patients had late grade 2 GU toxicity. No patients had grade 2 or higher gastrointestinal toxicity, and no grade 3 or higher toxicities were noted. There were no biochemical failures with median follow-up of 4.9 years (range, 2-8.5 years).ConclusionsDose escalation to MRSI-defined DIL is feasible. Toxicity was low but incompletely assessed due to limited patients' enrollment
Recommended from our members
Prostate cancer lesion detection, volume quantification and high-grade cancer differentiation using cancer risk maps derived from multiparametric MRI with histopathology as the reference standard
Multi-parametric MRI (mpMRI) has proven itself a clinically useful tool to assess prostate cancer (PCa). Our objective was to generate PCa risk maps to quantify the volume and location of both all PCa and high grade (Gleason grade group ≥ 3) PCa. Such capabilities would aid physicians and patients in treatment decisions, targeting biopsy, and planning focal therapy. A cohort of men with biopsy proven prostate cancer and pre-prostatectomy mpMRI were studied. PCa and benign ROIs (1524) were identified on mpMRI and histopathology with histopathology serving as the reference standard. Logistic regression models were created to differentiate PCa from benign tissues. The MRI images were registered to ensure correct overlay. The cancer models were applied to each image voxel within prostates to create probability maps of cancer and of high-grade cancer. Use of an optimum probability threshold quantified PCa volume for all lesions >0.1 cc. Accuracies were calculated using area under the curve (AUC) for the receiver operating characteristic (ROC). The PCa models utilized apparent diffusion coefficient (ADC), T2 weighted (T2W), dynamic contrast-enhanced MRI (DCE MRI) enhancement slope, and DCE MRI washout as the statistically significant MRI scans. Application of the PCa maps method provided total PCa volume and individual lesion volumes. The AUCs derived from lesion analysis were 0.91 for all PCa and 0.73 for high-grade PCa. At the optimum threshold, the PCa maps detected 135 / 150 (90%) histopathological lesions >0.1 cc. This study showed the feasibility of cancer risk maps, created from pre-prostatectomy, mpMR images validated with histopathology, to detect PCa lesions >0.1 cc. The method quantified the volume of cancer within the prostate. Method improvements were identified by determining root causes for over and underestimation of cancer volumes. The maps have the potential for improved non-invasive capability in quantitative detection, localization, volume estimation, and MRI characterization of PCa
Recommended from our members
Liver Steatosis: Concordance of MR Imaging and MR Spectroscopic Data with Histologic Grade
PurposeTo determine if the concordance of magnetic resonance (MR) imaging and MR spectroscopic data with histologic measures of steatosis is affected by histologic magnification level, tissue heterogeneity, or assessment of tissue area versus that of hepatocytes.Materials and methodsThis study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. In- and out-of-phase MR imaging and MR spectroscopic measures of steatosis were compared in 33 patients with nonalcoholic fatty liver disease and in 15 healthy volunteers. Concordance of MR imaging and MR spectroscopic data with histologic findings was assessed for (a) histologic examination at standard (×40 and ×100) versus high magnification (×200 and ×400), (b) heterogeneity and homogeneity of livers, and (c) percentage of tissue and hepatocytes that contained lipids. Evaluations included linear regression and Fisher exact tests.ResultsIn- and out-of-phase MR imaging and MR spectroscopic data were well correlated (R2=0.93) and generally concordant with histologic measures. Patients in whom MR fat fractions were higher than expected compared with steatosis grades at standard magnification histologic examination were upgraded significantly more often when high magnification was used than were the remaining patients (100% [10 of 10] vs 47% [7 of 15], P<.01). MR imaging and MR spectroscopic data of homogeneous livers were significantly more likely than those of heterogeneous livers to be concordant with steatosis grades when high magnification was used (81% [13 of 16] vs 47% [8 of 17], P<.05). For all patients, percentage of fat in tissue was lower than that in hepatocytes, which affected individual patients, but not the overall correlation.ConclusionMR imaging and MR spectroscopic data were generally concordant with histologic measures of steatosis. Discordance between them may reflect differences in magnification at histologic examination and in liver heterogeneity
Liver Steatosis: Concordance of MR Imaging and MR Spectroscopic Data with Histologic Grade
PURPOSE: To determine if the concordance of magnetic resonance (MR) imaging and MR spectroscopic data with histologic measures of steatosis is affected by histologic magnification level, tissue heterogeneity, or assessment of tissue area versus that of hepatocytes. MATERIALS AND METHODS: This study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. In- and out-of-phase MR imaging and MR spectroscopic measures of steatosis were compared in 33 patients with nonalcoholic fatty liver disease and in 15 healthy volunteers. Concordance of MR imaging and MR spectroscopic data with histologic findings was assessed for (a) histologic examination at standard (×40 and ×100) versus high magnification (×200 and ×400), (b) heterogeneity and homogeneity of livers, and (c) percentage of tissue and hepatocytes that contained lipids. Evaluations included linear regression and Fisher exact tests. RESULTS: In- and out-of-phase MR imaging and MR spectroscopic data were well correlated (R(2) = 0.93) and generally concordant with histologic measures. Patients in whom MR fat fractions were higher than expected compared with steatosis grades at standard magnification histologic examination were upgraded significantly more often when high magnification was used than were the remaining patients (100% [10 of 10] vs 47% [7 of 15], P < .01). MR imaging and MR spectroscopic data of homogeneous livers were significantly more likely than those of heterogeneous livers to be concordant with steatosis grades when high magnification was used (81% [13 of 16] vs 47% [8 of 17], P < .05). For all patients, percentage of fat in tissue was lower than that in hepatocytes, which affected individual patients, but not the overall correlation. CONCLUSION: MR imaging and MR spectroscopic data were generally concordant with histologic measures of steatosis. Discordance between them may reflect differences in magnification at histologic examination and in liver heterogeneity. © RSNA, 201
Recommended from our members
Identification of prostate cancer using multiparametric MR imaging characteristics of prostate tissues referenced to whole mount histopathology.
In this study, the objective was to characterize the MR signatures of the various benign prostate tissues and to differentiate them from cancer. Data was from seventy prostate cancer patients who underwent multiparametric MRI (mpMRI) and subsequent prostatectomy. The scans included T2-weighted imaging (T2W), diffusion weighted imaging, dynamic contrast-enhanced MRI (DCE MRI), and MR spectroscopic imaging. Histopathology tissue information was translated to MRI images. The mpMRI parameters were characterized separately per zone and by tissue type. The tissues were ordered according to trends in tissue parameter means. The peripheral zone tissue order was cystic atrophy, high grade prostatic intraepithelial neoplasia (HGPIN), normal, atrophy, inflammation, and cancer. Decreasing values for tissue order were exhibited by ADC (1.8 10-3 mm2/s to 1.2 10-3 mm2/s) and T2W intensity (3447 to 2576). Increasing values occurred for DCE MRI peak (143% to 157%), DCE MRI slope (101%/min to 169%/min), fractional anisotropy (FA) (0.16 to 0.19), choline (7.2 to 12.2), and choline / citrate (0.3 to 0.9). The transition zone tissue order was cystic atrophy, mixed benign prostatic hyperplasia (BPH), normal, atrophy, inflammation, stroma, anterior fibromuscular stroma, and cancer. Decreasing values occurred for ADC (1.6 10-3 mm2/s to 1.1 10-3 mm2/s) and T2W intensity (2863 to 2001). Increasing values occurred for DCE MRI peak (143% to 150%), DCE MRI slope (101%/min to 137%/min), FA (0.18 to 0.25), choline (7.9 to 11.7), and choline / citrate (0.3 to 0.7). Logistic regression was used to create parameter model fits to differentiate cancer from benign prostate tissues. The fits achieved AUCs ≥0.91. This study quantified the mpMRI characteristics of benign prostate tissues and demonstrated the capability of mpMRI to discriminate among benign as well as cancer tissues, potentially aiding future discrimination of cancer from benign confounders
Practical aspects of prostate MRI: hardware and software considerations, protocols, and patient preparation.
The use of multiparametric MRI scans for the evaluation of men with prostate cancer has increased dramatically and is likely to continue expanding as new developments come to practice. However, it has not yet gained the same level of acceptance of other imaging tests. Partly, this is because of the use of suboptimal protocols, lack of standardization, and inadequate patient preparation. In this manuscript, we describe several practical aspects of prostate MRI that may facilitate the implementation of new prostate imaging programs or the expansion of existing ones