292 research outputs found
Kontribusi USAhatani Ternak Kambing dalam Meningkatkan Pendapatan Petani (Studi Kasus di Desa Batungsel, Kecamatan Pupuan, Kabupaten Tabanan)
The aims of this study were to analyze: (1) goat farm contribution to the farmer\u27s income, (2) minimum farm scale for providing benefit, and (3) financial feasibility of the goat farm. This study was conducted in the Batungsel Village, Pupuan District, Tabanan Regency. Interview used questioner to farmers is done to collect data. Income analysis, BEP (Break Event Point), Profit Rate, and R/C ratio, was used in this study. The results of this study showed that: net income of the farmer from goat farm was Rp. 6,375,000. Profit rate 66.93% and R/C ratio of 1.67 showed that the goat farm was feasible financially. Break Event Point can be attain on Rp. 6,284,393 of the revenue or 8 goat of production. Income from goat farm give the largest contribution to total farmer income. This study indicated that the goat farm can be used as a solution to reducing poverty rate in the villages
Identification of Mechanosensitive Genes during Embryonic Bone Formation
Although it is known that mechanical forces are needed for normal bone
development, the current understanding of how biophysical stimuli are
interpreted by and integrated with genetic regulatory mechanisms is limited.
Mechanical forces are thought to be mediated in cells by
“mechanosensitive” genes, but it is a challenge to
demonstrate that the genetic regulation of the biological system is dependant on
particular mechanical forces in vivo. We propose a new means of selecting
candidate mechanosensitive genes by comparing in vivo gene expression patterns
with patterns of biophysical stimuli, computed using finite element analysis. In
this study, finite element analyses of the avian embryonic limb were performed
using anatomically realistic rudiment and muscle morphologies, and patterns of
biophysical stimuli were compared with the expression patterns of four candidate
mechanosensitive genes integral to bone development. The expression patterns of
two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise
with biophysical stimuli induced by embryonic muscle contractions, identifying
them as potentially being involved in the mechanoregulation of bone formation.
An altered mechanical environment was induced in the embryonic chick, where a
neuromuscular blocking agent was administered in ovo to modify skeletal muscle
contractions. Finite element analyses predicted dramatic changes in levels and
patterns of biophysical stimuli, and a number of immobilised specimens exhibited
differences in ColX and Ihh expression. The results obtained indicate that
computationally derived patterns of biophysical stimuli can be used to inform a
directed search for genes that may play a mechanoregulatory role in particular
in vivo events or processes. Furthermore, the experimental data demonstrate that
ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators
in translating information from the mechanical environment to the molecular
regulation of bone formation in the embryo
Genetic information: important but not "exceptional"
Much legislation dealing with the uses of genetic information could be criticised for exceptionalising genetic information over other types of information personal to the individual. This paper contends that genetic exceptionalism clouds the issues, and precludes any real debate about the appropriate uses of genetic information. An alternative to “genetically exceptionalist” legislation is to “legislate for fairness”. This paper explores the “legislating for fairness” approach, and concludes that it demonstrates a fundamental misunderstanding of both how legislation is drafted, and how it is interpreted. The uncomfortable conclusion is this: policy-makers and legislators must tackle head-on the difficult policy questions concerning what should and should not be done with genetic information. Only by confronting this crucial issue will they achieve a workable legislative solution to the problems caused by genetic information
Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass
Action Recognition with a Bio--Inspired Feedforward Motion Processing Model: The Richness of Center-Surround Interactions
International audienceHere we show that reproducing the functional properties of MT cells with various center--surround interactions enriches motion representation and improves the action recognition performance. To do so, we propose a simplified bio--inspired model of the motion pathway in primates: It is a feedforward model restricted to V1-MT cortical layers, cortical cells cover the visual space with a foveated structure, and more importantly, we reproduce some of the richness of center-surround interactions of MT cells. Interestingly, as observed in neurophysiology, our MT cells not only behave like simple velocity detectors, but also respond to several kinds of motion contrasts. Results show that this diversity of motion representation at the MT level is a major advantage for an action recognition task. Defining motion maps as our feature vectors, we used a standard classification method on the Weizmann database: We obtained an average recognition rate of 98.9%, which is superior to the recent results by Jhuang et al. (2007). These promising results encourage us to further develop bio--inspired models incorporating other brain mechanisms and cortical layers in order to deal with more complex videos
Attitudes and Practices Among Internists Concerning Genetic Testing
Many questions remain concerning whether, when, and how physicians order genetic tests, and what factors are involved in their decisions. We surveyed 220 internists from two academic medical centers about their utilization of genetic testing. Rates of genetic utilizations varied widely by disease. Respondents were most likely to have ordered tests for Factor V Leiden (16.8 %), followed by Breast/Ovarian Cancer (15.0 %). In the past 6 months, 65 % had counseled patients on genetic issues, 44 % had ordered genetic tests, 38.5 % had referred patients to a genetic counselor or geneticist, and 27.5 % had received ads from commercial labs for genetic testing. Only 4.5 % had tried to hide or disguise genetic information, and <2 % have had patients report genetic discrimination. Only 53.4 % knew of a geneticist/genetic counselor to whom to refer patients. Most rated their knowledge as very/somewhat poor concerning genetics (73.7 %) and guidelines for genetic testing (87.1 %). Most felt needs for more training on when to order tests (79 %), and how to counsel patients (82 %), interpret results (77.3 %), and maintain privacy (80.6 %). Physicians were more likely to have ordered a genetic test if patients inquired about genetic testing (p < .001), and if physicians had a geneticist/genetic counselor to whom to refer patients (p < .002), had referred patients to a geneticist/genetic counselor in the past 6 months, had more comfort counseling patients about testing (p < .019), counseled patients about genetics, larger practices (p < .032), fewer African‐American patients (p < .027), and patients who had reported genetic discrimination (p < .044). In a multiple logistic regression, ordering a genetic test was associated with patients inquiring about testing, having referred patients to a geneticist/genetic counselor and knowing how to order tests. These data suggest that physicians recognize their knowledge deficits, and are interested in training. These findings have important implications for future medical practice, research, and education
First Report of Circulating MicroRNAs in Tumour Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS)
Tumor necrosis factor-receptor associated periodic syndrome (TRAPS) is a rare autosomal dominant autoinflammatory disorder characterized by recurrent episodes of long-lasting fever and inflammation in different regions of the body, such as the musculo-skeletal system, skin, gastrointestinal tract, serosal membranes and eye. Our aims were to evaluate circulating microRNAs (miRNAs) levels in patients with TRAPS, in comparison to controls without inflammatory diseases, and to correlate their levels with parameters of disease activity and/or disease severity. Expression levels of circulating miRNAs were measured by Agilent microarrays in 29 serum samples from 15 TRAPS patients carrying mutations known to be associated with high disease penetrance and from 8 controls without inflammatory diseases. Differentially expressed and clinically relevant miRNAs were detected using GeneSpring GX software. We identified a 6 miRNAs signature able to discriminate TRAPS from controls. Moreover, 4 miRNAs were differentially expressed between patients treated with the interleukin (IL)-1 receptor antagonist, anakinra, and untreated patients. Of these, miR-92a-3p and miR-150-3p expression was found to be significantly reduced in untreated patients, while their expression levels were similar to controls in samples obtained during anakinra treatment. MiR-92b levels were inversely correlated with the number of fever attacks/year during the 1st year from the index attack of TRAPS, while miR-377-5p levels were positively correlated with serum amyloid A (SAA) circulating levels. Our data suggest that serum miRNA levels show a baseline pattern in TRAPS, and may serve as potential markers of response to therapeutic intervention
Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos
Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint
- …