2,754 research outputs found

    The Consistent Newtonian Limit of Einstein's Gravity with a Cosmological Constant

    Get PDF
    We derive the `exact' Newtonian limit of general relativity with a positive cosmological constant Λ\Lambda. We point out that in contrast to the case with Λ=0\Lambda = 0 , the presence of a positive Λ\Lambda in Einsteins's equations enforces, via the condition Φ1| \Phi | \ll 1, on the potential Φ\Phi, a range Rmax(Λ)rRmin(Λ){\cal R}_{max}(\Lambda) \gg r \gg {\cal R}_{min} (\Lambda), within which the Newtonian limit is valid. It also leads to the existence of a maximum mass, Mmax(Λ){\cal M}_{max}(\Lambda). As a consequence we cannot put the boundary condition for the solution of the Poisson equation at infinity. A boundary condition suitably chosen now at a finite range will then get reflected in the solution of Φ\Phi provided the mass distribution is not spherically symmetric.Comment: Latex, 15 pages, no figures, errors correcte

    About the propagation of the Gravitational Waves in an asymptotically de-Sitter space: Comparing two points of view

    Full text link
    We analyze the propagation of gravitational waves (GWs) in an asymptotically de-Sitter space by expanding the perturbation around Minkowski and introducing the effects of the Cosmological Constant (Λ\Lambda), first as an additional source (de-Donder gauge) and after as a gauge effect (Λ\Lambda-gauge). In both cases the inclusion of the Cosmological Constant Λ\Lambda impedes the detection of a gravitational wave at a distance larger than Lcrit=(62πfh^/5)rΛ2L_{crit}=(6\sqrt{2}\pi f \hat{h}/\sqrt{5})r_\Lambda^2, where rΛ=1Λr_\Lambda=\frac{1}{\sqrt{\Lambda}} and f and h^\hat{h} are the frequency and strain of the wave respectively. We demonstrate that LcritL_{crit} is just a confirmation of the Cosmic No hair Conjecture (CNC) already explained in the literature.Comment: Accepted for publication in MPL
    corecore