733 research outputs found
Social games in a social network
We study an evolutionary version of the Prisoner's Dilemma game, played by
agents placed in a small-world network. Agents are able to change their
strategy, imitating that of the most successful neighbor. We observe that
different topologies, ranging from regular lattices to random graphs, produce a
variety of emergent behaviors. This is a contribution towards the study of
social phenomena and transitions governed by the topology of the community
Dynamic instabilities induced by asymmetric influence: Prisoners' dilemma game on small-world networks
A two-dimensional small-world type network, subject to spatial prisoners'
dilemma dynamics and containing an influential node defined as a special node
with a finite density of directed random links to the other nodes in the
network, is numerically investigated. It is shown that the degree of
cooperation does not remain at a steady state level but displays a punctuated
equilibrium type behavior manifested by the existence of sudden breakdowns of
cooperation. The breakdown of cooperation is linked to an imitation of a
successful selfish strategy of the influential node. It is also found that
while the breakdown of cooperation occurs suddenly, the recovery of it requires
longer time. This recovery time may, depending on the degree of steady state
cooperation, either increase or decrease with an increasing number of long
range connections.Comment: 5 pages, 6 figure
Phase transition and critical behaviour of the d=3 Gross-Neveu model
A second order phase transition for the three dimensional Gross-Neveu model
is established for one fermion species N=1. This transition breaks a paritylike
discrete symmetry. It constitutes its peculiar universality class with critical
exponent \nu = 0.63 and scalar and fermionic anomalous dimension \eta_\sigma =
0.31 and \eta_\psi = 0.11, respectively. We also compute critical exponents for
other N. Our results are based on exact renormalization group equations.Comment: 4 pages, 1 figure; v4 corresponds to the published articl
Studying Paths of Participation in Viral Diffusion Process
Authors propose a conceptual model of participation in viral diffusion
process composed of four stages: awareness, infection, engagement and action.
To verify the model it has been applied and studied in the virtual social chat
environment settings. The study investigates the behavioral paths of actions
that reflect the stages of participation in the diffusion and presents
shortcuts, that lead to the final action, i.e. the attendance in a virtual
event. The results show that the participation in each stage of the process
increases the probability of reaching the final action. Nevertheless, the
majority of users involved in the virtual event did not go through each stage
of the process but followed the shortcuts. That suggests that the viral
diffusion process is not necessarily a linear sequence of human actions but
rather a dynamic system.Comment: In proceedings of the 4th International Conference on Social
Informatics, SocInfo 201
Comparing feature matching for object categorization in video surveillance
In this paper we consider an object categorization system using local HMAX features. Two feature matching techniques are compared: the MAX technique, originally proposed in the HMAX framework, and the histogram technique originating from Bag-of-Words literature. We have found that each of these techniques have their own field of operation. The histogram technique clearly outperforms the MAX technique with 5-15% for small dictionaries up to 500-1,000 features, favoring this technique for embedded (surveillance) applications. Additionally, we have evaluated the influence of interest point operators in the system. A first experiment analyzes the effect of dictionary creation and has showed that random dictionaries outperform dictionaries created from Hessian-Laplace points. Secondly, the effect of operators in the dictionary matching stage has been evaluated. Processing all image points outperforms the point selection from the Hessian-Laplace operator
Reversible Random Sequential Adsorption of Dimers on a Triangular Lattice
We report on simulations of reversible random sequential adsorption of dimers
on three different lattices: a one-dimensional lattice, a two-dimensional
triangular lattice, and a two-dimensional triangular lattice with the nearest
neighbors excluded. In addition to the adsorption of particles at a rate K+, we
allow particles to leave the surface at a rate K-. The results from the
one-dimensional lattice model agree with previous results for the continuous
parking lot model. In particular, the long-time behavior is dominated by
collective events involving two particles. We were able to directly confirm the
importance of two-particle events in the simple two-dimensional triangular
lattice. For the two-dimensional triangular lattice with the nearest neighbors
excluded, the observed dynamics are consistent with this picture. The
two-dimensional simulations were motivated by measurements of Ca++ binding to
Langmuir monolayers. The two cases were chosen to model the effects of changing
pH in the experimental system.Comment: 9 pages, 10 figure
The effects of grain shape and frustration in a granular column near jamming
We investigate the full phase diagram of a column of grains near jamming, as
a function of varying levels of frustration. Frustration is modelled by the
effect of two opposing fields on a grain, due respectively to grains above and
below it. The resulting four dynamical regimes (ballistic, logarithmic,
activated and glassy) are characterised by means of the jamming time of
zero-temperature dynamics, and of the statistics of attractors reached by the
latter. Shape effects are most pronounced in the cases of strong and weak
frustration, and essentially disappear around a mean-field point.Comment: 17 pages, 19 figure
Sfermion Precision Measurements at a Linear Collider
At future e+- e- linear colliders, the event rates and clean signals of
scalar fermion production - in particular for the scalar leptons - allow very
precise measurements of their masses and couplings and the determination of
their quantum numbers. Various methods are proposed for extracting these
parameters from the data at the sfermion thresholds and in the continuum. At
the same time, NLO radiative corrections and non-zero width effects have been
calculated in order to match the experimental accuracy. The substantial mixing
expected for the third generation sfermions opens up additional opportunities.
Techniques are presented for determining potential CP-violating phases and for
extracting tan(beta) from the stau sector, in particular at high values. The
consequences of possible large mass differences in the stop and sbottom system
are explored in dedicated analyses.Comment: Expanded version of contributions to the proceedings of ICHEP'02
(Amsterdam) and LCWS 2002 (Jeju Island
Dynamical Chiral Symmetry Breaking on the Light Front I. DLCQ Approach
Dynamical chiral symmetry breaking in the DLCQ method is investigated in
detail using a chiral Yukawa model closely related to the Nambu-Jona-Lasinio
model. By classically solving three constraints characteristic of the
light-front formalism, we show that the chiral transformation defined on the
light front is equivalent to the usual one when bare mass is absent. A quantum
analysis demonstrates that a nonperturbative mean-field solution to the
``zero-mode constraint'' for a scalar boson (sigma) can develop a nonzero
condensate while a perturbative solution cannot. This description is due to our
identification of the ``zero-mode constraint'' with the gap equation. The
mean-field calculation clarifies unusual chiral transformation properties of
fermionic field, which resolves a seemingly inconsistency between triviality of
the null-plane chiral charge Q_5|0>=0 and nonzero condensate. We also calculate
masses of scalar and pseudoscalar bosons for both symmetric and broken phases,
and eventually derive the PCAC relation and nonconservation of Q_5 in the
broken phase.Comment: Revised version to appear in Phys. Rev. D. 19 pages, 4 figures,
REVTEX. Derivation of the PCAC relation is given. Its relation to the
nonconservation of chiral charge is clarified. 1 figure and some references
adde
Lectures on Chiral Disorder in QCD
I explain the concept that light quarks diffuse in the QCD vacuum following
the spontaneous breakdown of chiral symmetry. I exploit the striking analogy to
disordered electrons in metals, identifying, among others, the universal regime
described by random matrix theory, diffusive regime described by chiral
perturbation theory and the crossover between these two domains.Comment: Lectures given at the Cargese Summer School, August 6-18, 200
- …