733 research outputs found

    Social games in a social network

    Full text link
    We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community

    Dynamic instabilities induced by asymmetric influence: Prisoners' dilemma game on small-world networks

    Full text link
    A two-dimensional small-world type network, subject to spatial prisoners' dilemma dynamics and containing an influential node defined as a special node with a finite density of directed random links to the other nodes in the network, is numerically investigated. It is shown that the degree of cooperation does not remain at a steady state level but displays a punctuated equilibrium type behavior manifested by the existence of sudden breakdowns of cooperation. The breakdown of cooperation is linked to an imitation of a successful selfish strategy of the influential node. It is also found that while the breakdown of cooperation occurs suddenly, the recovery of it requires longer time. This recovery time may, depending on the degree of steady state cooperation, either increase or decrease with an increasing number of long range connections.Comment: 5 pages, 6 figure

    Phase transition and critical behaviour of the d=3 Gross-Neveu model

    Full text link
    A second order phase transition for the three dimensional Gross-Neveu model is established for one fermion species N=1. This transition breaks a paritylike discrete symmetry. It constitutes its peculiar universality class with critical exponent \nu = 0.63 and scalar and fermionic anomalous dimension \eta_\sigma = 0.31 and \eta_\psi = 0.11, respectively. We also compute critical exponents for other N. Our results are based on exact renormalization group equations.Comment: 4 pages, 1 figure; v4 corresponds to the published articl

    Studying Paths of Participation in Viral Diffusion Process

    Full text link
    Authors propose a conceptual model of participation in viral diffusion process composed of four stages: awareness, infection, engagement and action. To verify the model it has been applied and studied in the virtual social chat environment settings. The study investigates the behavioral paths of actions that reflect the stages of participation in the diffusion and presents shortcuts, that lead to the final action, i.e. the attendance in a virtual event. The results show that the participation in each stage of the process increases the probability of reaching the final action. Nevertheless, the majority of users involved in the virtual event did not go through each stage of the process but followed the shortcuts. That suggests that the viral diffusion process is not necessarily a linear sequence of human actions but rather a dynamic system.Comment: In proceedings of the 4th International Conference on Social Informatics, SocInfo 201

    Comparing feature matching for object categorization in video surveillance

    Get PDF
    In this paper we consider an object categorization system using local HMAX features. Two feature matching techniques are compared: the MAX technique, originally proposed in the HMAX framework, and the histogram technique originating from Bag-of-Words literature. We have found that each of these techniques have their own field of operation. The histogram technique clearly outperforms the MAX technique with 5-15% for small dictionaries up to 500-1,000 features, favoring this technique for embedded (surveillance) applications. Additionally, we have evaluated the influence of interest point operators in the system. A first experiment analyzes the effect of dictionary creation and has showed that random dictionaries outperform dictionaries created from Hessian-Laplace points. Secondly, the effect of operators in the dictionary matching stage has been evaluated. Processing all image points outperforms the point selection from the Hessian-Laplace operator

    Reversible Random Sequential Adsorption of Dimers on a Triangular Lattice

    Full text link
    We report on simulations of reversible random sequential adsorption of dimers on three different lattices: a one-dimensional lattice, a two-dimensional triangular lattice, and a two-dimensional triangular lattice with the nearest neighbors excluded. In addition to the adsorption of particles at a rate K+, we allow particles to leave the surface at a rate K-. The results from the one-dimensional lattice model agree with previous results for the continuous parking lot model. In particular, the long-time behavior is dominated by collective events involving two particles. We were able to directly confirm the importance of two-particle events in the simple two-dimensional triangular lattice. For the two-dimensional triangular lattice with the nearest neighbors excluded, the observed dynamics are consistent with this picture. The two-dimensional simulations were motivated by measurements of Ca++ binding to Langmuir monolayers. The two cases were chosen to model the effects of changing pH in the experimental system.Comment: 9 pages, 10 figure

    The effects of grain shape and frustration in a granular column near jamming

    Full text link
    We investigate the full phase diagram of a column of grains near jamming, as a function of varying levels of frustration. Frustration is modelled by the effect of two opposing fields on a grain, due respectively to grains above and below it. The resulting four dynamical regimes (ballistic, logarithmic, activated and glassy) are characterised by means of the jamming time of zero-temperature dynamics, and of the statistics of attractors reached by the latter. Shape effects are most pronounced in the cases of strong and weak frustration, and essentially disappear around a mean-field point.Comment: 17 pages, 19 figure

    Sfermion Precision Measurements at a Linear Collider

    Get PDF
    At future e+- e- linear colliders, the event rates and clean signals of scalar fermion production - in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan(beta) from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses.Comment: Expanded version of contributions to the proceedings of ICHEP'02 (Amsterdam) and LCWS 2002 (Jeju Island

    Dynamical Chiral Symmetry Breaking on the Light Front I. DLCQ Approach

    Get PDF
    Dynamical chiral symmetry breaking in the DLCQ method is investigated in detail using a chiral Yukawa model closely related to the Nambu-Jona-Lasinio model. By classically solving three constraints characteristic of the light-front formalism, we show that the chiral transformation defined on the light front is equivalent to the usual one when bare mass is absent. A quantum analysis demonstrates that a nonperturbative mean-field solution to the ``zero-mode constraint'' for a scalar boson (sigma) can develop a nonzero condensate while a perturbative solution cannot. This description is due to our identification of the ``zero-mode constraint'' with the gap equation. The mean-field calculation clarifies unusual chiral transformation properties of fermionic field, which resolves a seemingly inconsistency between triviality of the null-plane chiral charge Q_5|0>=0 and nonzero condensate. We also calculate masses of scalar and pseudoscalar bosons for both symmetric and broken phases, and eventually derive the PCAC relation and nonconservation of Q_5 in the broken phase.Comment: Revised version to appear in Phys. Rev. D. 19 pages, 4 figures, REVTEX. Derivation of the PCAC relation is given. Its relation to the nonconservation of chiral charge is clarified. 1 figure and some references adde

    Lectures on Chiral Disorder in QCD

    Full text link
    I explain the concept that light quarks diffuse in the QCD vacuum following the spontaneous breakdown of chiral symmetry. I exploit the striking analogy to disordered electrons in metals, identifying, among others, the universal regime described by random matrix theory, diffusive regime described by chiral perturbation theory and the crossover between these two domains.Comment: Lectures given at the Cargese Summer School, August 6-18, 200
    corecore