3,168 research outputs found

    S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification

    Full text link
    This paper investigates the problem of active learning for binary label prediction on a graph. We introduce a simple and label-efficient algorithm called S2 for this task. At each step, S2 selects the vertex to be labeled based on the structure of the graph and all previously gathered labels. Specifically, S2 queries for the label of the vertex that bisects the *shortest shortest* path between any pair of oppositely labeled vertices. We present a theoretical estimate of the number of queries S2 needs in terms of a novel parametrization of the complexity of binary functions on graphs. We also present experimental results demonstrating the performance of S2 on both real and synthetic data. While other graph-based active learning algorithms have shown promise in practice, our algorithm is the first with both good performance and theoretical guarantees. Finally, we demonstrate the implications of the S2 algorithm to the theory of nonparametric active learning. In particular, we show that S2 achieves near minimax optimal excess risk for an important class of nonparametric classification problems.Comment: A version of this paper appears in the Conference on Learning Theory (COLT) 201

    Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation

    Full text link
    Adaptive sampling results in dramatic improvements in the recovery of sparse signals in white Gaussian noise. A sequential adaptive sampling-and-refinement procedure called Distilled Sensing (DS) is proposed and analyzed. DS is a form of multi-stage experimental design and testing. Because of the adaptive nature of the data collection, DS can detect and localize far weaker signals than possible from non-adaptive measurements. In particular, reliable detection and localization (support estimation) using non-adaptive samples is possible only if the signal amplitudes grow logarithmically with the problem dimension. Here it is shown that using adaptive sampling, reliable detection is possible provided the amplitude exceeds a constant, and localization is possible when the amplitude exceeds any arbitrarily slowly growing function of the dimension.Comment: 23 pages, 2 figures. Revision includes minor clarifications, along with more illustrative experimental results (cf. Figure 2

    Multiscale likelihood analysis and complexity penalized estimation

    Full text link
    We describe here a framework for a certain class of multiscale likelihood factorizations wherein, in analogy to a wavelet decomposition of an L^2 function, a given likelihood function has an alternative representation as a product of conditional densities reflecting information in both the data and the parameter vector localized in position and scale. The framework is developed as a set of sufficient conditions for the existence of such factorizations, formulated in analogy to those underlying a standard multiresolution analysis for wavelets, and hence can be viewed as a multiresolution analysis for likelihoods. We then consider the use of these factorizations in the task of nonparametric, complexity penalized likelihood estimation. We study the risk properties of certain thresholding and partitioning estimators, and demonstrate their adaptivity and near-optimality, in a minimax sense over a broad range of function spaces, based on squared Hellinger distance as a loss function. In particular, our results provide an illustration of how properties of classical wavelet-based estimators can be obtained in a single, unified framework that includes models for continuous, count and categorical data types
    • …
    corecore