4,781 research outputs found
Potential operators associated with Jacobi and Fourier-Bessel expansions
We study potential operators (Riesz and Bessel potentials) associated with
classical Jacobi and Fourier-Bessel expansions. We prove sharp estimates for
the corresponding potential kernels. Then we characterize those , for which the potential operators are of strong type , of weak
type and of restricted weak type . These results may be thought
of as analogues of the celebrated Hardy-Littlewood-Sobolev fractional
integration theorem in the Jacobi and Fourier-Bessel settings. As an ingredient
of our line of reasoning, we also obtain sharp estimates of the Poisson kernel
related to Fourier-Bessel expansions.Comment: 28 pages, 4 figures; v2 (some comments on Bessel potentials added
Sharp estimates for potential operators associated with Laguerre and Dunkl-Laguerre expansions
We study potential operators associated with Laguerre function expansions of
convolution and Hermite types, and with Dunkl-Laguerre expansions. We prove
qualitatively sharp estimates of the corresponding potential kernels. Then we
characterize those , for which the potential operators
are bounded. These results are sharp analogues of the classical
Hardy-Littlewood-Sobolev fractional integration theorem in the Laguerre and
Dunkl-Laguerre settings.Comment: 25 pages, 2 figure
Sharp estimates of the potential kernel for the harmonic oscillator with applications
We prove qualitatively sharp estimates of the potential kernel for the
harmonic oscillator. These bounds are then used to show that the
estimates of the associated potential operator obtained recently by Bongioanni
and Torrea are in fact sharp.Comment: 10 pages, 1 figure; v2 (corrections in Section 3 concerning Theorem
3.1 and its proof and Figure 1
Genuinely sharp heat kernel estimates on compact rank-one symmetric spaces, for Jacobi expansions, on a ball and on a simplex
We prove genuinely sharp two-sided global estimates for heat kernels on all
compact rank-one symmetric spaces. This generalizes the authors' recent result
obtained for a Euclidean sphere of arbitrary dimension. Furthermore, similar
heat kernel bounds are shown in the context of classical Jacobi expansions, on
a ball and on a simplex. These results are more precise than the qualitatively
sharp Gaussian estimates proved recently by several authors.Comment: 16 page
Miejsce miejskich obszarów funkcjonalnych w procesie rozwoju regionalnego
Problematyka miejskich obszarów funkcjonalnych nie jest nowym przedmiotem badań naukowych ani na świecie, ani w Polsce. Od kilkudziesięciu lat prowadzone są badania nad obszarami wyróżniającymi się występowaniem relacji przestrzennych i społeczno-gospodarczych między miastem głównym (ośrodkiem rdzeniowym) a jednostkami położonymi w jego najbliższym otoczeniu (strefa peryferyjna). Artykuł zawiera uszczegółowienie terminów stosowanych w delimitacji tych terenów, a także systematyzację teorii rozwoju regionalnego, która stanowi podstawę do określenia roli miejskich obszarów funkcjonalnych, w tym ośrodka rdzeniowego i strefy peryferyjnej, w tych koncepcjach. Głównym celem pracy jest określenie zakładanego w koncepcjach teoretycznych znaczenia miejskich obszarów funkcjonalnych w procesie rozwoju regionalnego
On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
We study several fundamental harmonic analysis operators in the
multi-dimensional context of the Dunkl harmonic oscillator and the underlying
group of reflections isomorphic to . Noteworthy, we admit
negative values of the multiplicity functions. Our investigations include
maximal operators, -functions, Lusin area integrals, Riesz transforms and
multipliers of Laplace and Laplace-Stieltjes type. By means of the general
Calder\'on-Zygmund theory we prove that these operators are bounded on weighted
spaces, , and from weighted to weighted weak .
We also obtain similar results for analogous set of operators in the closely
related multi-dimensional Laguerre-symmetrized framework. The latter emerges
from a symmetrization procedure proposed recently by the first two authors. As
a by-product of the main developments we get some new results in the
multi-dimensional Laguerre function setting of convolution type
- …
