275 research outputs found

    Form Factors of Composite Systems by Generalized Wigner-Eckart Theorem for Poincar\'e group

    Full text link
    The relativistic approach to electroweak properties of two-particle composite systems developed previously is generalized here to the case of nonzero spin. This approach is based on the instant form of relativistic Hamiltonian dynamics. A special mathematical technique is used for the parametrization of matrix elements of electroweak current operators in terms of form factors. The parametrization is a realization of the generalized Wigner--Eckart theorem on the Poincar\'e group, form factors are corresponding reduced matrix elements and they have the sense of distributions (generalized functions). The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of electromagnetic current it also automatically satisfies the conservation law.Comment: Submitted to Theor. Math. Phy

    THE FIRST EXPERIENCE WITH TISSUCOL AT MOSCOW CITY CANCER HOSPITAL SIXTY-TWO

    Get PDF
    The paper describes the first experience with the fibrin sealant Tissucol at Moscow City Cancer Hospital Sixty-Two. The authors used this agent in different clinical situations. However, Tissucol showed the highest efficacy in arresting long-term severe lymphorrhea. The described clinical case clearly demonstrates the abilities of this agent and allows it to be recommended for use in other areas of oncology

    A cosmological constant from the QCD trace anomaly?

    Get PDF
    According to recent astrophysical observations the large scale mean pressure of our present universe is negative suggesting a positive cosmological constant like term. This article addresses the question of whether non-perturbative effects of self-interacting quantum fields in curved space-times may yield a significant contribution. Focusing on the trace anomaly of quantum chromo-dynamics (QCD), a preliminary estimate of the expected order of magnitude yields a remarkable coincidence with the empirical data, indicating the potential relevance of this effect. PACS: 04.62.+v, 12.38.Aw, 12.38.Lg, 98.80.Es.Comment: 4 pages, RevTe

    Lagrangian for the Majorana-Ahluwalia Construct

    Get PDF
    The equations describing self/anti-self charge conjugate states, recently proposed by Ahluwalia, are re-written to covariant form. The corresponding Lagrangian for the neutral particle theory is proposed. From a group-theoretical viewpoint the construct is an example of the Nigam-Foldy-Bargmann-Wightman-Wigner-type quantum field theory based on the doubled representations of the extended Lorentz group. Relations with the Sachs-Schwebel and Ziino-Barut concepts of relativistic quantum theory are discussed.Comment: 10pp., REVTeX 3.0 fil

    On the Strength of the Carbon Nanotube-Based Space Elevator Cable: From Nano- to Mega-Mechanics

    Full text link
    In this paper different deterministic and statistical models, based on new quantized theories proposed by the author, are presented to estimate the strength of a real, thus defective, space elevator cable. The cable, of ~100 megameters in length, is composed by carbon nanotubes, ~100 nanometers long: thus, its design involves from the nano- to the mega-mechanics. The predicted strengths are extensively compared with the experiments and the atomistic simulations on carbon nanotubes available in the literature. All these approaches unequivocally suggest that the megacable strength will be reduced by a factor at least of ~70% with respect to the theoretical nanotube strength, today (erroneously) assumed in the cable design. The reason is the unavoidable presence of defects in a so huge cable. Preliminary in silicon tensile experiments confirm the same finding. The deduced strength reduction is sufficient to pose in doubt the effective realization of the space elevator, that if built as today designed will surely break (according to the s opinion). The mechanics of the cable is also revised and possibly damage sources discussed

    Interactions of a j=1j=1 boson in the 2(2j+1)2(2j+1) component theory

    Full text link
    The amplitudes for boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the used model is the Weinberg's 2(2j+1)2(2j+1) component formalism for describing a particle of spin jj, recently developed substantially. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the ground of the hamiltonian formulation of quantum field theory on the mass hyperboloid, p02p2=M2p_0^2 -{\bf p}^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of TT matrices for the fermion and the boson cases. However, certain differences are found. Possible physical applications are discussed.Comment: REVTeX 3.0 file. 12pp. Substantially revised version of IFUNAM preprints FT-93-24, FT-93-3

    Fermion-fermion and boson-boson amplitudes: surprising similarities

    Full text link
    Amplitudes for fermion-fermion, boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the model is the Weinberg's 2(2j+1)-component formalism for describing a particle of spin j. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the basis of the Hamiltonian formulation of quantum field theory on the mass hyperboloid, p_0^2 - p^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of T-matrices for the fermion case and the boson case. However, certain differences are found. Possible physical applications are discussed.Comment: 7 pages, no figures, talks given at the 5th International Symposium on "Quantum Theory and Symmetries", July 22-28, 2007, Valladolid, Spain and the 10th Workshop "What comes beyond the Standard Model?", July 17-27, 2007, Bled, Sloveni

    Neutral Particles in Light of the Majorana-Ahluwalia Ideas

    Get PDF
    The first part of this article (Sections I and II) presents oneself an overview of theory and phenomenology of truly neutral particles based on the papers of Majorana, Racah, Furry, McLennan and Case. The recent development of the construct, undertaken by Ahluwalia [{\it Mod. Phys. Lett. A}{\bf 9} (1994) 439; {\it Acta Phys. Polon. B}{\bf 25} (1994) 1267; Preprints LANL LA-UR-94-1252, LA-UR-94-3118], could be relevant for explanation of the present experimental situation in neutrino physics and astrophysics. In Section III the new fundamental wave equations for self/anti-self conjugate type-II spinors, proposed by Ahluwalia, are re-casted to covariant form. The connection with the Foldy-Nigam-Bargmann-Wightman- Wigner (FNBWW) type quantum field theory is found. The possible applications to the problem of neutrino oscillations are discussed.Comment: REVTEX file. 21pp. No figure

    Thermal Fields, Entropy, and Black Holes

    Get PDF
    In this review we describe statistical mechanics of quantum systems in the presence of a Killing horizon and compare statistical-mechanical and one-loop contributions to black hole entropy. Studying these questions was motivated by attempts to explain the entropy of black holes as a statistical-mechanical entropy of quantum fields propagating near the black hole horizon. We provide an introduction to this field of research and review its results. In particular, we discuss the relation between the statistical-mechanical entropy of quantum fields and the Bekenstein-Hawking entropy in the standard scheme with renormalization of gravitational coupling constants and in the theories of induced gravity.Comment: 44 pages, LaTeX fil
    corecore