2,185 research outputs found

    The New Fat Higgs: Slimmer and More Attractive

    Full text link
    In this paper we increase the MSSM tree level higgs mass bound to a value that is naturally larger than the LEP-II search constraint by adding to the superpotential a λSHuHd\lambda S H_{u}H_{d} term, as in the NMSSM, and UV completing with new strong dynamics {\it before} λ\lambda becomes non-perturbative. Unlike other models of this type the higgs fields remain elementary, alleviating the supersymmetric fine-tuning problem while maintaining unification in a natural way.Comment: 14 pages and 2 figures. Added references and updated argument about constraints from reheating temperatur

    The Hopf Skyrmion in QCD with Adjoint Quarks

    Full text link
    We consider a modification of QCD in which conventional fundamental quarks are replaced by Weyl fermions in the adjoint representation of the color SU(N). In the case of two flavors the low-energy chiral Lagrangian is that of the Skyrme-Faddeev model. The latter supports topologically stable solitons with mass scaling as N^2. Topological stability is due to the existence of a nontrivial Hopf invariant in the Skyrme-Faddeev model. Our task is to identify, at the level of the fundamental theory, adjoint QCD, an underlying reason responsible for the stability of the corresponding hadrons. We argue that all "normal" mesons and baryons, with mass O(N^0), are characterized by (-1)^Q (-1)^F =1, where Q is a conserved charge corresponding to the unbroken U(1) surviving in the process of the chiral symmetry breaking (SU(2) \to U(1) for two adjoint flavors). Moreover, F is the fermion number (defined mod 2 in the case at hand). We argue that there exist exotic hadrons with mass O(N^2) and (-1)^Q (-1)^F = -1. They are in one-to-one correspondence with the Hopf Skyrmions. The transition from nonexotic to exotic hadrons is due to a shift in F, namely F \to F - {\cal H} where {\cal H} is the Hopf invariant. To detect this phenomenon we have to extend the Skyrme-Faddeev model by introducing fermions.Comment: 18 pages, 3 figures; v.2: a reference and a comment added; v.3: two comments added, figures improve

    Semileptonic BB Meson Decays Into A Highly Excited Charmed Meson Doublet

    Full text link
    We study the heavy quark effective theory prediction for semileptonic BB decays into an orbital excited FF-wave charmed doublet, the (2+2^{+}, 3+3^{+}) states (D2D^{*'}_{2}, D3D_{3}), at the leading order of heavy quark expansion. The corresponding universal form factor is estimated by using the QCD sum rule method. The decay rates we predict are ΓBD2ν=1.85×1019GeV\Gamma_{B\to D^{*'}_{2}\ell\overline{\nu}}=1.85\times10^{-19} {GeV} and ΓBD3ν=1.78×1019GeV\Gamma_{B\to D_{3}\ell\overline{\nu}}=1.78\times10^{-19} {GeV}. The branching ratios are B(BD2ν)=4.6×107\mathcal {B}(B\to D_{2}^{*'}\ell\overline{\nu})=4.6\times10^{-7} and B(BD3ν)=4.4×107\mathcal {B}(B\to D_{3}\ell\overline{\nu})=4.4\times10^{-7}, respectively.Comment: 6 pages,2 figure

    Responses of the Brans-Dicke field due to gravitational collapses

    Full text link
    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω\omega ~ -1.5. If the Brans-Dicke coupling is greater than -1.5, the TuuT_{uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the TvvT_{vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.Comment: 28 pages, 14 figure

    Vortex -- Kink Interaction and Capillary Waves in a Vector Superfluid

    Full text link
    Interaction of a vortex in a circularly polarized superfluid component of a 2d complex vector field with the phase boundary between superfluid phases with opposite signs of polarization leads to a resonant excitation of a ``capillary'' wave on the boundary. This leads to energy losses by the vortex--image pair that has to cause its eventual annihilation.Comment: LaTeX 7 pages, no figure

    The spin-incoherent Luttinger liquid

    Get PDF
    In contrast to the well known Fermi liquid theory of three dimensions, interacting one-dimensional and quasi one-dimensional systems of fermions are described at low energy by an effective theory known as Luttinger liquid theory. This theory is expressed in terms of collective many-body excitations that show exotic behavior such as spin-charge separation. Luttinger liquid theory is commonly applied on the premise that "low energy" describes both the spin and charge sectors. However, when the interactions in the system are very strong, as they typically are at low particle densities, the ratio of spin to charge energy may become exponentially small. It is then possible at very low temperatures for the energy to be low compared to the characteristic charge energy, but still high compared to the characteristic spin energy. This energy window of near ground-state charge degrees of freedom, but highly thermally excited spin degrees of freedom is called a spin-incoherent Luttinger liquid. The spin-incoherent Luttinger liquid exhibits a higher degree universality than the Luttinger liquid and its properties are qualitatively distinct. In this colloquium I detail some of the recent theoretical developments in the field and describe experimental indications of such a regime in gated semiconductor quantum wires.Comment: 21 pages, 18 figures. Updated references, corrected typo in Eq.(20) in journal versio

    Zero mode effect in the 1+1^{-+} four quark states

    Full text link
    We calculate the masses of the 1+1^{-+} four quark states which decay dominantly into ρπ\rho\pi and ηπ\eta\pi respectively by QCD sum rules approach. We include the zero mode contribution and find it plays an important role in the sum rules. We predict that the masses of the states ηπ\eta\pi and ρπ\rho\pi both are 1.4-1.5 GeV. This is close to the experimental candidates π1(1370)\pi_1(1370) and π1(1440)\pi_1(1440).Comment: 5 pages, 4 Postscript figure

    Are physical objects necessarily burnt up by the blue sheet inside a black hole?

    Get PDF
    The electromagnetic radiation that falls into a Reissner-Nordstrom black hole develops a ``blue sheet'' of infinite energy density at the Cauchy horizon. We consider classical electromagnetic fields (that were produced during the collapse and then backscattered into the black hole), and investigate the blue-sheet effects of these fields on infalling objects within a simplified model. These effects are found to be finite and even negligible for typical parameters.Comment: 13 pages, ordinary LaTex. Accepted for Physical Review Letters

    Aspects of the stochastic Burgers equation and their connection with turbulence

    Full text link
    We present results for the 1 dimensional stochastically forced Burgers equation when the spatial range of the forcing varies. As the range of forcing moves from small scales to large scales, the system goes from a chaotic, structureless state to a structured state dominated by shocks. This transition takes place through an intermediate region where the system exhibits rich multifractal behavior. This is mainly the region of interest to us. We only mention in passing the hydrodynamic limit of forcing confined to large scales, where much work has taken place since that of Polyakov. In order to make the general framework clear, we give an introduction to aspects of isotropic, homogeneous turbulence, a description of Kolmogorov scaling, and, with the help of a simple model, an introduction to the language of multifractality which is used to discuss intermittency corrections to scaling. We continue with a general discussion of the Burgers equation and forcing, and some aspects of three dimensional turbulence where - because of the mathematical analogy between equations derived from the Navier-Stokes and Burgers equations - one can gain insight from the study of the simpler stochastic Burgers equation. These aspects concern the connection of dissipation rate intermittency exponents with those characterizing the structure functions of the velocity field, and the dynamical behavior, characterized by different time constants, of velocity structure functions. We also show how the exponents characterizing the multifractal behavior of velocity structure functions in the above mentioned transition region can effectively be calculated in the case of the stochastic Burgers equation.Comment: 25 pages, 4 figure

    Quantum Transport in Molecular Rings and Chains

    Full text link
    We study charge transport driven by deformations in molecular rings and chains. Level crossings and the associated Longuet-Higgins phase play a central role in this theory. In molecular rings a vanishing cycle of shears pinching a gap closure leads, generically, to diverging charge transport around the ring. We call such behavior homeopathic. In an infinite chain such a cycle leads to integral charge transport which is independent of the strength of deformation. In the Jahn-Teller model of a planar molecular ring there is a distinguished cycle in the space of uniform shears which keeps the molecule in its manifold of ground states and pinches level crossing. The charge transport in this cycle gives information on the derivative of the hopping amplitudes.Comment: Final version. 26 pages, 8 fig
    corecore