11 research outputs found
The extended empirical process test for non-Gaussianity in the CMB, with an application to non-Gaussian inflationary models
In (Hansen et al. 2002) we presented a new approach for measuring
non-Gaussianity of the Cosmic Microwave Background (CMB) anisotropy pattern,
based on the multivariate empirical distribution function of the spherical
harmonics a_lm of a CMB map. The present paper builds upon the same ideas and
proposes several improvements and extensions. More precisely, we exploit the
additional information on the random phases of the a_lm to provide further
tests based on the empirical distribution function. Also we take advantage of
the effect of rotations in improving the power of our procedures. The suggested
tests are implemented on physically motivated models of non-Gaussian fields;
Monte-Carlo simulations suggest that this approach may be very promising in the
analysis of non-Gaussianity generated by non-standard models of inflation. We
address also some experimentally meaningful situations, such as the presence of
instrumental noise and a galactic cut in the map.Comment: 15 pages, 6 figures, submitted to Phys. Rev.
Testing for non-Gaussianity of the cosmic microwave background in harmonic space: an empirical process approach
We present a new, model-independent approach for measuring non-Gaussianity of
the Cosmic Microwave Background (CMB) anisotropy pattern. Our approach is based
on the empirical distribution function of the normalized spherical harmonic
expansion coefficients a_lm of a nearly full-sky CMB map, like the ones
expected from forthcoming satellite experiments. Using a set of
Kolmogorov-Smirnov type tests, we check for Gaussianity and independency of the
a_lm. We test the method on two non-Gaussian toy-models of the CMB, one
generated in spherical harmonic space and one in pixel (real) space. We also
provide some rigorous results, possibly of independent interest, on the exact
distribution of the spherical harmonic coefficients normalized by an estimated
angular power spectrum.Comment: 29 pages, 7 figures, submitted to Phys. Rev.
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Uncomputability Below the Real Halting Problem
Most of the existing work in real number computation theory concentrates on complexity issues rather than computability aspects. Though some natural problems like deciding membership in the Mandelbrot set or in the set of rational numbers are known to be undecidable in the Blum-Shub-Smale (BSS) model of computation over the reals, there has not been much work on different degrees of undecidability. A typical question into this direction is the real version of Post’s classical problem: Are there some explicit undecidable problems below the real Halting Problem? In this paper we study three different topics related to such questions: First an extension of a positive answer to Post’s problem to the linear setting. We then analyze how additional real constants increase the power of a BSS machine. And finally a real variant of the classical word problem for groups is presented which we establish reducible to and from (that is, complete for) the BSS Halting problem
First neutrino observations from the sudbury neutrino observatory
The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed
Measurement of CC interactions produced by8B solar neutrinos at SNO
The Sudbury Neutrino Observatory (SNO) is a 1000 tonne heavy water Cherenkov detector placed 2 km underground in Ontario, Canada. Its main purpose is the detection of solar neutrinos, but it is also sensitive to atmospheric and supernova neutrinos. In this paper we report our first measurement of the solar electron-type neutrino flux using the charged current interaction on deuterium, above an electron kinetic energy threshold of 6.75 MeV. This measurement, when compared with an electron scattering measurement from Super Kamiokande, provides the first evidence for non-electron neutrino types from the Sun implying flavor change of solar electron neutrinos. We also present an initial angular distribution of through-going muons, which shows that we can detect neutrino-induced muons from well above the horizontal. This will give us good sensitivity to neutrino oscillations in the atmospheric sector