3,518 research outputs found
The Distribution of the Largest Non-trivial Eigenvalues in Families of Random Regular Graphs
Recently Friedman proved Alon's conjecture for many families of d-regular
graphs, namely that given any epsilon > 0 `most' graphs have their largest
non-trivial eigenvalue at most 2 sqrt{d-1}+epsilon in absolute value; if the
absolute value of the largest non-trivial eigenvalue is at most 2 sqrt{d-1}
then the graph is said to be Ramanujan. These graphs have important
applications in communication network theory, allowing the construction of
superconcentrators and nonblocking networks, coding theory and cryptography. As
many of these applications depend on the size of the largest non-trivial
positive and negative eigenvalues, it is natural to investigate their
distributions. We show these are well-modeled by the beta=1 Tracy-Widom
distribution for several families. If the observed growth rates of the mean and
standard deviation as a function of the number of vertices holds in the limit,
then in the limit approximately 52% of d-regular graphs from bipartite families
should be Ramanujan, and about 27% from non-bipartite families (assuming the
largest positive and negative eigenvalues are independent).Comment: 23 pages, version 2 (MAJOR correction: see footnote 7 on page 7: the
eigenvalue program unkowingly assumed the eigenvalues of the matrix were
symmetric, which is only true for bipartite graphs; thus the second largest
positive eigenvalue was returned instead of the largest non-trivial
eigenvalue). To appear in Experimental Mathematic
Limitations imposées par le sol, le type de culture et l'emploi exclusif de la végétation dans le choix des solutions pratiques de conservation du sol en Tunisie méridionale
Etude comparative de l'altération microbienne des différents minéraux constituants d'une diabase
Cuirasses latéritiques et minéralisations aurifères de la région de Kangaba au Mali : cartographie, pétrographie, minéralogie, géochimie et télédétection : rapport de première phase
- …
