21 research outputs found

    t(11;16)(q23;q24) KMT2A/USP10

    Get PDF
    Review on t(11;16)(q23;q24), with data on clinics, and the genes involved

    Methodological Challenges of Digital PCR Detection of the Histone H3 K27M Somatic Variant in Cerebrospinal Fluid

    Get PDF
    Cell-free DNA (cfDNA) in body fluids is invaluable for cancer diagnostics. Despite the impressive potential of liquid biopsies for the diagnostics of central nervous system (CNS) tumors, a number of challenges prevent introducing this approach into routine laboratory practice. In this study, we adopt a protocol for sensitive detection of the H3 K27M somatic variant in cerebrospinal fluid (CSF) by using digital polymerase chain reaction (dPCR). Optimization of the protocol was carried out stepwise, including preamplification of the H3 target region and adjustment of dPCR conditions. The optimized protocol allowed detection of the mutant allele starting from DNA quantities as low as 9 picograms. Analytical specificity was tested using a representative group of tumor tissue samples with known H3 K27M status, and no false-positive cases were detected. The protocol was applied to a series of CSF samples collected from patients with CNS tumors (n = 18) using two alternative dPCR platforms, QX200 Droplet Digital PCR system (Bio-Rad) and QIAcuity Digital PCR System (Qiagen). In three out of four CSF specimens collected from patients with H3 K27M-positive diffuse midline glioma, both platforms allowed detection of the mutant allele. The use of ventricular access for CSF collection appears preferential, as lumbar CSF samples may produce ambiguous results. All CSF samples collected from patients with H3 wild-type tumors were qualified as H3 K27M-negative. High agreement of the quantitative data obtained with the two platforms demonstrates universality of the approach

    Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets

    Get PDF
    Wiskott-Aldrich syndrome (WAS) is associated with thrombocytopenia of unclear origin. We investigated real-time cytosolic calcium dynamics, mitochondrial membrane potential and phoszphatidylserine (PS) exposure in single fibrinogen-bound platelets using confocal microscopy. The WAS platelets had higher resting calcium levels, more frequent spikes, and their mitochondria more frequently lost membrane potential followed by PS exposure (in 22.9% of platelets vs. 3.9% in controls;

    Hematopoietic stem cell transplantation in a patient with type 1 mosaic variegated aneuploidy syndrome

    No full text
    Abstract Background Mosaic variegated aneuploidy (MVA) syndrome is a chromosomal instability disorder that leads to aneuploidies of different chromosomes in various tissues. Type 1 MVA (MVA1) is caused by mutations in the budding uninhibited by benzimidazoles 1 homolog beta (BUB1B) gene. The main clinical features of MVA1 syndrome are growth and mental retardation, central nervous system anomalies, microcephaly, and predisposition to cancers. There have been no reports of hematopoietic stem cell transplantation (HSCT) in MVA patients. Results We report an 11-year old boy diagnosed with MVA1 syndrome. The BUB1B gene mutations c.498_505delAAACTTTA and c.1288 + 5G > A were detected using the next generation sequencing (NGS) method. The patient presented with cytopenia soon after birth, but remained stable until 9 years of age, when he developed myelodysplastic syndrome associated with monosomy of chromosome 7. Due to severe dependence on blood transfusions, a TCRαβ+/CD19+ depleted HSCT was performed from a matched unrelated donor (MUD) using a treosulfan-based reduced intensity conditioning (RIC) regimen. The engraftment occurred, and no severe toxicity was observed soon after the HSCT, but on day + 47, graft rejection was detected. It was followed by prolonged pancytopenia and sepsis with multi-organ Enterococcus faecium infection, which led to the patient’s death on day + 156 after HSCT. Conclusions In conclusion, we demonstrate that RIC HSCT with TCRαβ+/CD19+ depletion was well tolerated and resulted in complete hematologic recovery in our MVA1 patient, but, unfortunately, it was followed by rapid graft rejection. This fact needs to be taken into consideration for HSCT in other MVA patients

    Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis

    No full text
    Immune thrombocytopenia (ITP) is an autoimmune condition primarily induced by the loss of immune tolerance to the platelet glycoproteins. Here we develop a novel flow cytometry approach to analyze integrin αIIbβ3 functioning in ITP in comparison with Glanzmann thrombasthenia (GT) (negative control) and healthy pediatric donors (positive control). Continuous flow cytometry of Fura-Red-loaded platelets from whole hirudinated blood was used for the characterization of platelet responses to conventional activators. Calcium levels and fibrinogen binding were normalized to ionomycin-induced responses. Ex vivo thrombus formation on collagen was observed in parallel-plate flow chambers. Platelets from all ITP patients had significantly higher cytosolic calcium concentration in the quiescent state compared to healthy donors (15 ± 5 nM vs. 8 ± 5 nM), but calcium increases in response to all activators were normal. Clustering analysis revealed two subpopulations of ITP patients: the subgroup with high fibrinogen binding (HFB), and the subgroup with low fibrinogen binding (LFB) (8% ± 5% for LFB vs. 16% ± 3% for healthy donors in response to ADP). GT platelets had calcium mobilization (81 ± 23 nM), fibrinogen binding (5.1% ± 0.3%) and thrombus growth comparable to the LFB subgroup. Computational modeling suggested phospholipase C-dependent platelet pre-activation for the HFB subgroup and lower levels of functional integrin molecules for the LFB group

    Reliable Flow-Cytometric Approach for Minimal Residual Disease Monitoring in Patients with B-Cell Precursor Acute Lymphoblastic Leukemia after CD19-Targeted Therapy

    No full text
    We aimed to develop an antibody panel and data analysis algorithm for multicolor flow cytometry (MFC), which is a reliable method for minimal residual disease (MRD) detection in patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treated with CD19-directed therapy. The development of the approach, which was adapted for the case of possible CD19 loss, was based on the additional B-lineage marker expression data obtained from a study of primary BCP-ALL patients, an analysis of the immunophenotypic changes that occur during blinatumomab or CAR-T therapy, and an analysis of very early CD19-negative normal BCPs. We have developed a single-tube 11-color panel for MFC-MRD detection. CD22- and iCD79a-based primary B-lineage gating (preferably consecutive) was recommended. Based on patterns of antigen expression changes and the relative expansion of normal CD19-negative BCPs, guidelines for MFC data analysis and interpretation were established. The suggested approach was tested in comparison with the molecular techniques: IG/TR gene rearrangement detection by next-generation sequencing (NGS) and RQ-PCR for fusion-gene transcripts (FGTs). Qualitative concordance rates of 82.8% and 89.8% were obtained for NGS-MRD and FGT-MRD results, respectively. We have developed a sensitive and reliable approach that allows MFC-MRD monitoring after CD19-directed treatment, even in the case of possible CD19 loss

    Recognizing Minor Leukemic Populations with Monocytic Features in Mixed-Phenotype Acute Leukemia by Flow Cell Sorting Followed by Cytogenetic and Molecular Studies: Report of Five Exemplary Cases

    No full text
    Mixed-phenotype acute leukemia (MPAL), a rare and heterogeneous category of acute leukemia, is characterized by cross-lineage antigen expression. Leukemic blasts in MPAL can be represented either by one population with multiple markers of different lineages or by several single-lineage populations. In some cases, a major blast population may coexist with a smaller population that has minor immunophenotypic abnormalities and may be missed even by an experienced pathologist. To avoid misdiagnosis, we suggest sorting doubtful populations and leukemic blasts and searching for similar genetic aberrations. Using this approach, we examined questionable monocytic populations in five patients with dominant leukemic populations of B-lymphoblastic origin. Cell populations were isolated either for fluorescence in situ hybridization or for clonality assessment by multiplex PCR or next-generation sequencing. In all cases, monocytic cells shared the same gene rearrangements with dominant leukemic populations, unequivocally confirming the same leukemic origin. This approach is able to identify implicit cases of MPAL and therefore leads to the necessary clinical management for patients

    Healthy pediatric platelets are moderately hyporeactive in comparison with adults’ platelets

    No full text
    Studies on platelet function in children older than neonatal period are few and their results are controversial. The pediatric platelets were alternatively reported to be more active or less active than adults’ ones. We compared platelet function in the several age groups of children to adults and evaluated the age when platelet function reaches the adults’ status. The study included 76 healthy children and 49 healthy adult volunteers. Types of platelet activation used included: collagen-related peptide (CRP) and PAR-1 activating peptide SFLLRN; SFLLRN, PAR-4 activating peptide AYPGKF and adenosine diphosphate (ADP); ADP. The parameters determined included forward (FSC) and side scatter (SSC), CD42b, CD61, CD62P, PAC-1, annexin V binding and mepacrine release levels. Resting pediatric platelets were similar to adults’ platelets except for 1.2-fold decreased FSC and dense granules volume in youngest children, and 2.5-fold increased annexin V level in children aged 1–10 years. After CRP+SFLLRN stimulation, pediatric platelets had a 1.2-fold lower alpha- and 1.1-fold lower dense granule release than adults. For SFLLRN+AYPGKF+ADP stimulation, this was observed only for youngest children. The response to ADP stimulation was identical for pediatric platelets and adults. Pediatric platelets have lower granular release than adults’ platelets, which persists until the age of 18
    corecore