48 research outputs found
Delineating the psychiatric and behavioral phenotype of recurrent 2q13 deletions and duplications
Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnosesparticularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD
Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration : significant association of twelve variants
Age-related Macular Degeneration (AMD) represents one of the most sightthreatening diseases in developed countries that substantially impacts the patients' lifestyle by compromising everyday activities, such as reading and driving. In this context, understanding the prevalence, burden, and population-specific risk/ protective factors of AMD is essential for adequate health care planning and provision. Our work aimed to characterize exudative AMD in Italian population and to identify the susceptibility/protective factors (genetic variants, age, sex, smoking and dietary habits) which are specific for the onset of disease. Our study involved a cohort of 1976 subjects, including 976 patients affected with exudative AMD and 1000 control subjects. In particular, the sample cohort has been subjected to a large genotyping analysis of 20 genetic variants which are known to be associated with AMD among European and Asiatic populations. This analysis revealed that 8 genetic variants (CFH, ARMS2, IL-8, TIMP3, SLC16A8, RAD51B, VEGFA and COL8A1) were significantly associated with AMD susceptibility. Successively, we performed a multivariate analysis, considering both genetic and non-genetic data available for our sample cohort. The multivariate analysis showed that age, smoking, dietary habits and sex, together with the genetic variants, were significantly associated with AMD in our population. Altogether, these data represent a starting point for the set-up of adequate preventive and personalized strategies aimed to decrease the burden of disease and improve the patients' quality of life
Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients
<p>Abstract</p> <p>Background</p> <p>MicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified <it>in silico </it>as attractive candidates for binding to the <it>DMPK </it>mRNA.</p> <p>Methods</p> <p>To this aim, we have profiled the expression of miR-133 (miR-133a, miR-133b), miR-1, miR-181 (miR-181a, miR-181b, miR-181c) and miR-206, that are specifically induced during myogenesis in cardiac and skeletal muscle tissues. miR-103 and miR-107, highly expressed in brain, heart and muscle have also been included in this study. QRT-PCR experiments have been performed on RNA from vastus lateralis biopsies of DM1 patients (n = 7) and control subjects (n = 4). Results of miRNAs expression have been confirmed by Northern blot, whereas <it>in situ </it>hybridization technique have been performed to localize misexpressed miRNAs on muscle sections from DM1 and control individuals.</p> <p>Results</p> <p>Only miR-206 showed an over-expression in 5 of 7 DM1 patients (threshold = 2, fold change between 1.20 and 13.22, average = 5.37) compared to the control group. This result has been further confirmed by Northern blot analysis (3.37-fold overexpression, <it>R</it><sup>2 </sup>= 0.89). <it>In situ </it>hybridization localized miR-206 to nuclear site both in normal and DM1 tissues. Cellular distribution in DM1 tissues includes also the nuclear regions of centralized nuclei, with a strong signal corresponding to nuclear clumps.</p> <p>Conclusions</p> <p>This work provides, for the first time, evidences about miRNAs misexpression in DM1 muscle tissues, adding a new element in the pathogenesis of this complex genetic disease.</p
Parent-of-Origin Effects in 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome
To identify whether parent-of-origin effects (POE) of the 15q11.2 BP1-BP2 microdeletion are associated with differences in clinical features in individuals inheriting the deletion, we collected 71 individuals reported with phenotypic data and known inheritance from a clinical cohort, a research cohort, the DECIPHER database, and the primary literature. Chi-squared and Mann-Whitney U tests were used to test for differences in specific and grouped clinical symptoms based on parental inheritance and proband gender. Analyses controlled for sibling sets and individuals with additional variants of uncertain significance (VOUS). Among all probands, maternal deletions were associated with macrocephaly (p = 0.016) and autism spectrum disorder (ASD; p = 0.02), while paternal deletions were associated with congenital heart disease (CHD; p = 0.004). Excluding sibling sets, maternal deletions were associated with epilepsy as well as macrocephaly (p < 0.05), while paternal deletions were associated with CHD and abnormal muscular phenotypes (p < 0.05). Excluding sibling sets and probands with an additional VOUS, maternal deletions were associated with epilepsy (p = 0.019) and paternal deletions associated with muscular phenotypes (p = 0.008). Significant gender-based differences were also observed. Our results supported POEs of this deletion and included macrocephaly, epilepsy and ASD in maternal deletions with CHD and abnormal muscular phenotypes seen in paternal deletions
A New Intronic Variant in ECEL1 in Two Patients with Distal Arthrogryposis Type 5D
Distal Arthrogryposis type 5D (DA5D) is characterized by congenital contractures involving the distal joints, short stature, scoliosis, ptosis, astigmatism, and dysmorphic features. It is inherited in an autosomal recessive manner, and it is a result of homozygous or compound heterozygous variants in the ECEL1 gene. Here, we report two patients of Sardinian origin harboring a new intronic homozygous variant in ECEL1 (c.1507-9G>A), which was predicted to affect mRNA splicing by activating a cryptic acceptor site. The frequency of the variant is very low in the general human population, and its presence in our families can be attributed to a founder effect. This study provides an updated review of the known causative mutations of the ECEL1 gene, enriching the allelic spectrum to include the noncoding sequence