605 research outputs found

    Magnetic properties of nanoscale crystalline maghemite obtained by a new synthetic route

    Get PDF
    AbstractIn this work we describe the synthesis and characterization of maghemite nanoparticles obtained by a new synthetic route. The material was synthesized using triethylamine as a coprecipitation agent in the presence of the organic ligand N,N′-bis(3,5-di-tert-butyl-catechol)-2,4-diaminotoluene (LCH3). Mössbauer spectrum at 4K shows typical hyperfine parameters of maghemite and Transmission Electron Microscopy images reveal that the nanoparticles have a mean diameter of 3.9nm and a narrow size distribution. AC magnetic susceptibility in zero field presents an Arrhenius behavior with unreasonable relaxation parameters due to the strong influence of dipolar interaction. In contrast when the measurements are performed in a 1kOe field, the effect of dipolar interactions becomes negligible and the obtained parameters are in good agreement with the static magnetic properties. The dynamic energy barrier obtained from the AC susceptibility results is larger than the expected from the average size observed by HRTEM results, evidencing the strong influence of the surface contribution to the anisotropy

    Superradiation from Crystals of High-Spin Molecular Nanomagnets

    Full text link
    Phenomenological theory of superradiation from crystals of high-spin molecules is suggested. We show that radiation friction can cause a superradiation pulse and investigate the role of magnetic anisotropy, external magnetic field and dipole-dipole interactions. Depending on the contribution of all these factors at low temperature, several regimes of magnetization of crystal sample are described. Very fast switch of magnetization's direction for some sets of parameters is predicted.Comment: 10 pages, 3 figure

    Meta-Analysis Reveals Challenges and Gaps for Genome-to-Phenome Research Underpinning Plant Drought Response

    Get PDF
    Severe drought conditions and extreme weather events are increasing worldwide with climate change, threatening the persistence of native plant communities and ecosystems. Many studies have investigated the genomic basis of plant responses to drought. However, the extent of this research throughout the plant kingdom is unclear, particularly among species critical for the sustainability of natural ecosystems. This study aimed to broaden our understanding of genome-to-phenome (G2P) connections in drought-stressed plants and identify focal taxa for future research. Bioinformatics pipelines were developed to mine and link information from databases and abstracts from 7730 publications. This approach identified 1634 genes involved in drought responses among 497 plant taxa. Most (83.30%) of these species have been classified for human use, and most G2P interactions have been described within model organisms or crop species. Our analysis identifies several gaps in G2P research literature and database connectivity, with 21% of abstracts being linked to gene and taxonomy data in NCBI. Abstract text mining was more successful at identifying potential G2P pathways, with 34% of abstracts containing gene, taxa, and phenotype information. Expanding G2P studies to include non-model plants, especially those that are adapted to drought stress, will help advance our understanding of drought responsive G2P pathways

    Bosonization in Particle Physics

    Get PDF
    Path integral techniques in collective fields are shown to be a useful analytical tool to reformulate a field theory defined in terms of microscopic quark (gluon) degrees of freedom as an effective theory of collective boson (meson) fields. For illustrations, the path integral bosonization approach is applied to derive a (non)linear sigma model from a Nambu-Jona-Lasinio (NJL) quark model. The method can be extended to include higher order derivative terms in meson fields or heavy-quark symmetries. It is also approximately applicable to QCD.Comment: 12 pages, LaTeX, uses lamuphys.sty, 5 LaTeX figures, talk given at the Workshop "Field Theoretical Tools in Polymer and Particle Physics", University Wuppertal, June 17-19, 199

    Characterization of the S = 9 excited state in Fe8Br8 by Electron Paramagnetic Resonance

    Full text link
    High Frequency electron paramagnetic resonance has been used to observe the magnetic dipole, Δ\Delta Ms_s = ±\pm 1, transitions in the S=9S = 9 excited state of the single molecule magnet Fe8_8Br8_8. A Boltzmann analysis of the measured intensities locates it at 24 ±\pm 2 K above the S=10S = 10 ground state, while the line positions yield its magnetic parameters D = -0.27 K, E = ±\pm0.05 K, and B40_4^0 = -1.3×\times 106^{-6} K. D is thus smaller by 8% and E larger by 7% than for S=10S = 10. The anisotropy barrier for S=9S = 9 is estimated as 22 K,which is 25% smaller than that for S=10S = 10 (29 K). These data also help assign the spin exchange constants(J's) and thus provide a basis for improved electronic structure calculations of Fe8_8Br8_8.Comment: 7 pages, Figs included in text, submitted to PR

    Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation

    Full text link
    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(w)\chi(w) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(w)\chi(w). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study of these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references adde

    Chiral symmetry breaking in hot matter

    Full text link
    This series of three lectures covers (a) a basic introduction to symmetry breaking in general and chiral symmetry breaking in QCD, (b) an overview of the present status of lattice data and the knowlegde that we have at finite temperature from chiral perturbation theory. (c) Results obtained from the Nambu--Jona-Lasinio model describing static mesonic properties are discussed as well as the bulk thermodynamic quantities. Divergences that are observed in the elastic quark-antiquark scattering cross-section, reminiscent of the phenomenon of critical opalescence in light scattering, is also discussed. (d) Finally, we deal with the realm of systems out of equilibrium, and examine the effects of a medium dependent condensate in a system of interacting quarks.Comment: 62 LaTex pages, incorporating 23 figures. Lectures given at the eleventh Chris-Engelbrecht Summer School in Theoretical Physics, 4-13 February, 1998, to be published by Springer Verla

    Fresnel polarisation of infra-red radiation by elemental bismuth

    Get PDF
    We revisit the classical problem of electromagnetic wave refraction from a lossless dielectric to a lossy conductor, where both media are considered to be non-magnetic, linear, isotropic and homogeneous. We derive the Fresnel coefficients of the system and the Poynting vectors at the interface, in order to compute the reflectance and transmittance of the system. We use a particular parametrisation of the referred Fresnel coefficients so as to make a connection with the ones obtained for refraction by an interface between two lossless media. This analysis allows the discussion of an actual application, namely the Fresnel polarisation of infra-red radiation by elemental bismuth, based on the concept of pseudo Brewster’s angle.We acknowledge helpful discussions with M. Vasilevskiy, P. Alpuim, J. Caridad and B. Figueiredo. The authors thank the European Structural and Investment Funds in the FEDER component, through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020) [under the Project GNESIS -Graphenest's New Engineered System and its Implementation Solutions; Funding Reference: POCI-01-0247-FEDER-033566], European Regional Development Fund. This work was also supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019
    corecore