4 research outputs found

    Schizophrenia and cardiometabolic abnormalities: A Mendelian randomization study

    Get PDF
    Background: Individuals with a diagnosis of schizophrenia are known to be at high risk of premature mortality due to poor physical health, especially cardiovascular disease, diabetes, and obesity. The reasons for these physical health outcomes within this patient population are complex. Despite well-documented cardiometabolic adverse effects of certain antipsychotic drugs and lifestyle factors, schizophrenia may have an independent effect.Aims: To investigate if there is evidence that schizophrenia is causally related to cardiometabolic traits (blood lipids, anthropometric traits, glycaemic traits, blood pressure) and vice versa using bi-directional two-sample Mendelian randomization (MR) analysis.Methods: We used 185 genetic variants associated with schizophrenia from the latest Psychiatric Genomics Consortium GWAS (n = 130,644) in the forward analysis (schizophrenia to cardiometabolic traits) and genetic variants associated with the cardiometabolic traits from various consortia in the reverse analysis (cardiometabolic traits to schizophrenia), both at genome-wide significance (5 × 10−8). The primary method was inverse-variance weighted MR, supported by supplementary methods such as MR-Egger, as well as median and mode-based methods.Results: In the forward analysis, schizophrenia was associated with slightly higher low-density lipoprotein (LDL) cholesterol levels (0.013 SD change in LDL per log odds increase in schizophrenia risk, 95% CI, 0.001–0.024 SD; p = 0.027) and total cholesterol levels (0.013 SD change in total cholesterol per log odds increase in schizophrenia risk, 95% CI, 0.002–0.025 SD; p = 0.023). However, these associations did not survive multiple testing corrections. There was no evidence of a causal effect of cardiometabolic traits on schizophrenia in the reverse analysis.Discussion: Dyslipidemia and obesity in schizophrenia patients are unlikely to be driven primarily by schizophrenia itself. Therefore, lifestyle, diet, antipsychotic drugs side effects, as well as shared mechanisms for metabolic dysfunction and schizophrenia such as low-grade systemic inflammation could be possible reasons for the apparent increased risk of metabolic disease in people with schizophrenia. Further research is needed to examine the shared immune mechanism hypothesis

    Associations of antidepressants and antipsychotics with lipid parameters:Do <i>CYP2C19/CYP2D6</i> genes play a role? A UK population-based study

    No full text
    BACKGROUND: Dyslipidaemia is an important cardiovascular risk factor for people with severe mental illness, contributing to premature mortality. The link between antipsychotics and dyslipidaemia is well established, while evidence on antidepressants is mixed.AIMS: To investigate if antidepressant/antipsychotic use was associated with lipid parameters in UK Biobank participants and if CYP2C19 and CYP2D6 genetic variation plays a role.METHODS: Review of self-reported prescription medications identified participants taking antidepressants/antipsychotics. Total, low-, and high-density lipoprotein cholesterol (L/HDL-C) and triglycerides derived from blood samples. CYP2C19 and CYP2D6 metabolic phenotypes were assigned from genetic data. Linear regression investigated aims, adjusted for key covariates.RESULTS: Of 469,739 participants, 36,043 took antidepressants (53% female, median age 58, 17% taking cholesterol-lowering medications) and 3255 took antipsychotics (58% female, median age 57, 27% taking cholesterol-lowering medications). Significant associations were found between use of each amitriptyline, fluoxetine, citalopram/escitalopram, sertraline, paroxetine and venlafaxine with higher total cholesterol, LDL-C, and triglycerides and lower HDL-C, compared to participants not taking each medication. Venlafaxine was associated with the worst lipid profile (total cholesterol, adjusted mean difference: 0.21 mmol/L, 95% confidence interval (CI): 0.17 to 0.26, p &lt; 0.001). Antipsychotic use was significantly associated with lower HDL-C and higher triglycerides. In participants taking sertraline, CYP2C19 intermediate metabolisers had higher HDL-C (0.05 mmol/L, 95% CI: 0.01 to 0.09, p = 0.007) and lower triglycerides (-0.17 mmol/L, 95% CI: -0.29 to -0.05, p = 0.007), compared to normal metabolisers.CONCLUSIONS: Antidepressants were significantly associated with adverse lipid profiles, potentially warranting baseline and regular monitoring. Further research should investigate the mechanistic pathways underlying the protective effects of the CYP2C19 intermediate metaboliser phenotype on HDL-C and triglycerides in people taking sertraline.</p
    corecore