2 research outputs found
Chitosan and Sodium Alginate Combinations Are Alternative, Efficient, and Safe Natural Adjuvant Systems for Hepatitis B Vaccine in Mouse Model
Hepatitis B viral (HBV) infections represent major public health problem and are an occupational hazard for healthcare workers. Current alum-adjuvanted HBV vaccine is the most effective measure to prevent HBV infection. However, the vaccine has some limitations including poor response in some vaccinee and being a frost-sensitive suspension. The goal of our study was to use an alternative natural adjuvant system strongly immunogenic allowing for a reduction in dose and cost. We tested HBV surface antigen (HBsAg) adjuvanted with chitosan (Ch) and sodium alginate (S), both natural adjuvants, either alone or combined with alum in mouse model. Mice groups were immunized subcutaneously with HBsAg adjuvanted with Ch or S, or triple adjuvant formula with alum (Al), Ch, and S, or double formulations with AlCh or AlS. These were compared to control groups immunized with current vaccine formula or unadjuvanted HBsAg. We evaluated the rate of seroconversion, serum HBsAg antibody, IL-4, and IFN-γ levels. The results showed that the solution formula with Ch or S exhibited comparable immunogenic responses to Al-adjuvanted suspension. The AlChS gave significantly higher immunogenic response compared to controls. Collectively, our results indicated that Ch and S are effective HBV adjuvants offering natural alternatives, potentially reducing dose
Emergence and Genomic Characterization of a <i>spa</i> Type t4407 ST6-SCC<i>mec</i> Type IVa Methicillin-Resistant <i>Staphylococcus aureus</i> Strain Isolated from Al-Karak Hospital, Jordan
Background and Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a major concern in Jordanian hospitals in terms of infection control. The purpose of this study was to identify the resistance patterns of Staphylococcus aureus strains isolated from surfaces of critical locations within the Al-Karak Governmental Hospital in 2019. Additionally, the study aimed to conduct whole-genome sequencing on the isolates. Materials and Methods: In February 2019, fourteen S. aureus strains were isolated from surfaces in critical sites in the Al-Karak Governmental Hospital. These isolates underwent antibiogram testing to determine their resistance profile. Genome sequencing using the Illumina MiSeq platform was applied to the extracted DNA from these isolates. The genomic data, including coding sequences, were analyzed to identify lineage, resistance genes, and plasmids. Results: The antibiogram results revealed that 11 of the 14 isolates were resistant to oxacillin, 6 to linezolid, and 1 to rifampicin, while none showed resistance to chloramphenicol. Eleven isolates were identified as MRSA, with a novel spa type (t4407) not previously reported in Jordan. High-quality sequencing data were obtained for only one isolate, i.e., A29, the genome showed 2,789,641 bp with a 32.7% GC content and contained 2650 coding sequences. Genomic analysis indicated the ST6 lineage, mecA gene (SCCmec type IVa(2B)), and a hybrid plasmid (pJOR_blaZ) carrying the blaZ gene for β-lactam resistance. Genomic data were deposited in NCBI (CP104989). The A29 genome closely resembled an MRSA genome isolated from a Danish hospital in 2011. The SNP analysis revealed identical antimicrobial resistance genes in these two genomes. Conclusions: This study unveils the first genomic sequence of an MRSA isolate from Jordan, marked by distinctive genotypic traits. The findings enhance our understanding of the MRSA types circulating in Jordan and the region and substantiate the phenomenon of intercontinental MRSA transmission