3 research outputs found

    Myelin and Axon Pathology in a Long-Term Study of PMP22-Overexpressing Mice

    No full text
    We analyzed clinical and pathological disease in 2 peripheral myelin protein-22 (PMP22) overexpressing mouse models for 1.5 years. C22 mice have 7 and C3-PMP mice have 3 to 4 copies of the human PMP22 gene. C3-PMP mice showed no overt clinical signs at 3 weeks and developed mild neuromuscular impairment; C22 mice showed signs at 3 weeks that progressed to severe impairment. Adult C3-PMP mice had very similar, stable, low nerve conduction velocities similar to adults with human Charcot-Marie-Tooth disease type 1A (CMT1A); velocities were much lower in C22 mice. Myelination was delayed, and normal myelination was not reached in either model but the degree of dysmyelination in C3-PMP mice was considerably less than that in C22 mice; myelination was stable in the adult mice. Numbers of myelinated, fibers were reduced at 3 weeks in both models, suggesting that normal numbers of myelinated fibers are not reached during development in the models. In adult C3-PMP and wild-type mice, there was no detectable loss of myelinated fibers, whereas there was clear loss of myelinated fibers in C22 mice. In C3-PMP mice, there is a balance between myelination status and axonal function early in life, whereas in C22 mice, early reduction of axons is more severe and there is major loss of axons in adulthood. We conclude that C3-PMP mice may be an appropriate model for most CMT1A patients, whereas C22 mice may be more relevant to severely affected patients in the CMT1 spectru

    The membrane attack complex of the complement system is essential for rapid wallerian degeneration

    No full text
    The complement (C) system plays an important role in myelin breakdown during Wallerian degeneration (WD). The pathway and mechanism involved are, however, not clear. In a crush injury model of the sciatic nerve, we show that C6, necessary for the assembly of the membrane attack complex (MAC), is essential for rapid WD. At 3 d after injury, pronounced WD occurred in wild-type animals, whereas the axons and myelin of C6- deficient animals appeared intact. Macrophage recruitment and activation was inhibited in C6-deficient rats. However, 7 d after injury, the distal part of the C6-deficient nerves appeared degraded. As a consequence of a delayed WD, more myelin breakdown products were present than in wild-type nerves. Reconstitution of the C6-deficient animals with C6 restored the wild-type phenotype. Treatment with rhC1INH (recombinant human complement 1 inhibitor) blocked deposition of activated C-cleaved products after injury. These experiments demonstrate that the classical pathway of the complement system is activated after acute nerve trauma and that the entire complement cascade, including MAC deposition, is essential for rapid WD and efficient clearance of myelin after acute peripheral nerve traum
    corecore