4 research outputs found

    Novel Thiazole Derivatives of Medicinal Potential: Synthesis and Modeling

    Get PDF
    This paper reports on the synthesis of new thiazole derivatives that could be profitably exploited in medical treatment of tumors. Molecular electronic structures have been modeled within density function theory (DFT) framework. Reactivity indices obtained from the frontier orbital energies as well as electrostatic potential energy maps are discussed and correlated with the molecular structure. X-ray crystallographic data of one of the new compounds is measured and used to support and verify the theoretical results

    Novel Thiazole Derivatives of Medicinal Potential: Synthesis and Modeling

    No full text
    This paper reports on the synthesis of new thiazole derivatives that could be profitably exploited in medical treatment of tumors. Molecular electronic structures have been modeled within density function theory (DFT) framework. Reactivity indices obtained from the frontier orbital energies as well as electrostatic potential energy maps are discussed and correlated with the molecular structure. X-ray crystallographic data of one of the new compounds is measured and used to support and verify the theoretical results

    Synthesis of Some Pyrimidine, Pyrazole, and Pyridine Derivatives and Their Reactivity Descriptors

    No full text
    A series of novel pyrimidine (2, 3), pyrazole (4, 5), and pyridine (6) derivatives were synthesized using a chalcone-bearing thiophene nucleus (1). The target compounds were synthesized by reaction of compound (1) with urea, thiourea, malononitrile, hydrazine hydrate, and 2,4-dinitrophenyl hydrazine, respectively. Molecular electronic structures have been modeled within density functional theory framework (DFT). Reactivity indices and electrostatic surface potential maps (ESP maps) allow us to establish trends that enable making predictions about chemical characteristics of the newly synthesized molecules and their proton transfer tautomers. Proton transfer is generally more favored in solution than in the gas phase. In acetonitrile, keto-form tautomers and thione-form tautomers become more energetically stable than the corresponding enol or thiol tautomers due to solvent-induced enhancement in the molecular polarity identified by computed dipole moment

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore