6 research outputs found

    An ABS control logic based on wheel force measurement

    Get PDF
    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien

    Optimal predictive eco-driving cycles for conventional and electric cars

    No full text
    International audienceIn this paper, the computation of eco-driving cycles for electric and conventional vehicles using receding horizon and optimal control is investigated. The problem is formulated as consecutive-optimization problems aiming at minimizing the vehicle energy consumption under traffic and speed constraints. The solving method is based on Dynamic Programming (DP). The impact of the look-ahead distance on the optimal speed computation is studied to find a trade-off between the optimality and the computation time. Simulation results show that in urban driving conditions, a look-ahead distance of 300m to 500m leads to a sub-optimality less than 0.6% in the energy consumption compared to the global solution. For highway driving conditions, a look-ahead distance of 1km to 2km leads to a sub-optimality less than 0.7% compared to the global solution

    PROCEDE DE DETERMINATION D’UNE CONSIGNE DE VITESSE POUR MINIMISER LA CONSOMMATION ENERGETIQUE D’UN VEHICULE

    No full text
    L'invention porte sur un procédé de détermination d'une consigne de vitesse pour une chaîne de traction d'un véhicule, ledit procédé comprenant les étapes suivantes - la détermination (E2) d'une distance d'observation, désignée horizon électronique, inférieure à la distance totale, - la mise en oeuvre (E3) d'un premier algorithme de détermination d'un profil de vitesse maximale sur un tronçon considéré, jusqu'à l'horizon électronique, à partir de données issues d'au moins une source, - la mise en oeuvre (E5) d'un deuxième algorithme d'optimisation de la consommation énergétique pour déterminer un profil de vitesse optimale permettant de minimiser la consommation énergétique sur le tronçon considéré, jusqu'à l'horizon électronique, en fonction au moins du profil de vitesse maximale déterminée par le premier algorithme
    corecore