71 research outputs found

    Optimization of the gas flow in a GEM chamber and development of the GEM foil stretcher

    Get PDF
    The gas electron multiplier technology has been proven to tolerate rat e larger than 50 MHz/cm2 without noticeable aging and to provide sub resolution on working chambers up to 45 cm x 45 cm. A new gas electron multiplier-based tracker is under development for the Hall A upgrade at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 adjacent gas electron multiplier modules, with an active area of 40 cm x 50 cm each. We optimized the gas flow inside the gas electron multiplier module volume, using the COMSOL physics simulator framework; the COMSOL-based analysis includes the design of the inlet and outlet pipes and the maximization of the uniformity of the gas flow. We have defined the procedures for the assembling of the gas electron multiplier modules and designed a mechanical system (TENDIGEM) that will be used to stretch the GEM foils at the proper tension (few kg/cm); the TENDIGEM is based on the original design developed at LNF

    Derivation and validation of a predictive mortality model of in-hospital patients with Acinetobacter baumannii nosocomial infection or colonization

    Get PDF
    Purpose Acinetobacter baumannii (Ab) is a Gram-negative opportunistic bacterium responsible for nosocomial infections or colonizations. It is considered one of the most alarming pathogens due to its multi-drug resistance and due to its mortality rate, ranging from 34 to 44,5% of hospitalized patients. The aim of the work is to create a predictive mortality model for hospitalized patient with Ab infection or colonization. Methods A cohort of 140 sequentially hospitalized patients were randomized into a training cohort (TC) (100 patients) and a validation cohort (VC) (40 patients). Statistical bivariate analysis was performed to identify variables discriminating surviving patients from deceased ones in the TC, considering both admission time (T0) and infection detection time (T1) parameters. A custom logistic regression model was created and compared with models obtained from the "status" variable alone (Ab colonization/infection), SAPS II, and APACHE II scores. ROC curves were built to identify the best cut-off for each model. Results Ab infection status, use of penicillin within 90 days prior to ward admission, acidosis, Glasgow Coma Scale, blood pressure, hemoglobin and use of NIV entered the logistic regression model. Our model was confirmed to have a better sensitivity (63%), specificity (85%) and accuracy (80%) than the other models. Conclusion Our predictive mortality model demonstrated to be a reliable and feasible model to predict mortality in Ab infected/colonized hospitalized patients

    Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells

    Get PDF
    Multicavity halloysite nanotube materials were employed as simultaneous carriers for two different natural drugs, silibinin and quercetin, at 6.1% and 2.2% drug loadings, respectively. The materials were obtained by grafting functionalized amphiphilic cyclodextrin onto the HNT external surface. The new materials were characterized by FT-IR spectroscopy, SEM, thermogravimetry, turbidimetry, dynamic light scattering and ζ-potential techniques. The interaction of the two molecules with the carrier was studied by HPLC measurements and fluorescence spectroscopy, respectively. The release of the drugs from HNT-amphiphilic cyclodextrin, at two different pH values, was also investigated by means of UV-vis spectroscopy. Biological assays showed that the new complex exhibits anti-proliferative activity against human anaplastic thyroid cancer cell lines 8505C. Furthermore, fluorescence microscopy was used to evaluate whether the carrier was uptaken into 8505C thyroid cancer cell lines. The successful results revealed that the synthesized multicavity system is a material of suitable size to transport drugs into living cells

    Detection of Arcobacter spp. in food products collected from Sicilia region: A preliminary study

    Get PDF
    The aim of the study was to evaluate the occurrence of Arcobacter spp. in food samples collected from Sicilia region. A total of 91 food products of animal origin (41 meat, 17 fresh milk, 18 shellfish) and 15 samples of fresh vegetables, were examined by cultural method and confirmed by biochemical analysis and PCR methods. The detection of Arcobacter spp. was performed, after selective enrichment, on two selective agar plates: Arcobacter agar and mCCD (modified charcoal cefoperazone deoxycholate) agar supplemented with CAT (Cefoperazone, Amphotericin B and Teicoplanin). Arcobacter species were isolated using the membrane filtration technique. In 13 (14.3%) out of the 91 tested samples, the presence of Arcobacter spp. was found: the isolates were confirmed by multiplex PCR and identified as belonging to the species A. butzleri and A. cryaerophilus. The highest prevalence rate was observed in chicken meat (8.8%) followed by shellfish (3.3%). Negative results have been obtained for raw milks and vegetables samples. The preliminary study highlights the importance of this emerging pathogen and the need for further studies on its prevalence and distribution in different types of food for human consumption

    ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE

    Get PDF
    Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage

    OPTIMIZATION OF THE GAS FLOW IN A GEM CHAMBER AND DEVELOPMENT OF THE GEM FOIL STRETCHER

    Full text link
    The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm 2 without noticeable aging and to provide sub millimeter resolution on working chambers up to 45x45 cm

    Optimization of the gas flow in a GEM chamber and development of the GEM foil stretcher

    Full text link
    The gas electron multiplier technology has been proven to tolerate rat e larger than 50 MHz/cm2 without noticeable aging and to provide sub resolution on working chambers up to 45 cm x 45 cm. A new gas electron multiplier-based tracker is under development for the Hall A upgrade at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 adjacent gas electron multiplier modules, with an active area of 40 cm x 50 cm each. We optimized the gas flow inside the gas electron multiplier module volume, using the COMSOL physics simulator framework; the COMSOL-based analysis includes the design of the inlet and outlet pipes and the maximization of the uniformity of the gas flow. We have defined the procedures for the assembling of the gas electron multiplier modules and designed a mechanical system (TENDIGEM) that will be used to stretch the GEM foils at the proper tension (few kg/cm); the TENDIGEM is based on the original design developed at LNF
    • …
    corecore