156 research outputs found

    Performance predictions for a laser intensified thermal beam for use in high resolution Focused Ion Beam instruments

    Get PDF
    Photo-ionization of a laser-cooled and compressed atomic beam from a high-flux thermal source can be used to create a high-brightness ion beam for use in Focus Ion Beam (FIB) instruments. Here we show using calculations and Doppler cooling simulations that an atomic rubidium beam with a brightness of 2.1×107A/(m2sreV)2.1 \times 10^7 A/(m^2\,sr\,eV) at a current of 1 nA can be created using a compact 5 cm long 2D magneto-optical compressor which is more than an order of magnitude better than the current state of the art Liquid Metal Ion Source.Comment: 8 pages, 7 figures submitted to: Phys. Rev.

    Precision spectroscopy of helium in a magic wavelength optical dipole trap

    Full text link
    Improvements in both theory and frequency metrology of few-electron systems such as hydrogen and helium have enabled increasingly sensitive tests of quantum electrodynamics (QED), as well as ever more accurate determinations of fundamental constants and the size of the nucleus. At the same time advances in cooling and trapping of neutral atoms have revolutionized the development of increasingly accurate atomic clocks. Here, we combine these fields to reach the highest precision on an optical tranistion in the helium atom to date by employing a Bose-Einstein condensate confined in a magic wavelength optical dipole trap. The measured transition accurately connects the ortho- and parastates of helium and constitutes a stringent test of QED theory. In addition we test polarizability calculations and ultracold scattering properties of the helium atom. Finally, our measurement probes the size of the nucleus at a level exceeding the projected accuracy of muonic helium measurements currently being performed in the context of the proton radius puzzle

    Antimicrobial susceptibility profile of clinically relevant Bacteroides, Phocaeicola, Parabacteroides and Prevotella species, isolated by eight laboratories in the Netherlands

    Get PDF
    Objectives: Recently, reports on antimicrobial-resistant Bacteroides and Prevotella isolates have increased in the Netherlands. This urged the need for a surveillance study on the antimicrobial susceptibility profile of Bacteroides, Phocaeicola, Parabacteroides and Prevotella isolates consecutively isolated from human clinical specimens at eight different Dutch laboratories. Methods: Each laboratory collected 20–25 Bacteroides (including Phocaeicola and Parabacteroides) and 10–15 Prevotella isolates for 3 months. At the national reference laboratory, the MICs of amoxicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem, metronidazole, clindamycin, tetracycline and moxifloxacin were determined using agar dilution. Isolates with a high MIC of metronidazole or a carbapenem, or harbouring cfiA, were subjected to WGS. Results: Bacteroides thetaiotaomicron/faecis isolates had the highest MIC 90 values, whereas Bacteroides fragilis had the lowest MIC 90 values for amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem and moxifloxacin. The antimicrobial profiles of the different Prevotella species were similar, except for amoxicillin, for which the MIC 50 ranged from 0.125 to 16 mg/L for Prevotella bivia and Prevotella buccae, respectively. Three isolates with high metronidazole MICs were sequenced, of which one Bacteroides thetaiotaomicron isolate harboured a plasmid-located nimE gene and a Prevotella melaninogenica isolate harboured a nimA gene chromosomally. Five Bacteroides isolates harboured a cfiA gene and three had an IS element upstream, resulting in high MICs of carbapenems. The other two isolates harboured no IS element upstream of the cfiA gene and had low MICs of carbapenems. Conclusions: Variations in resistance between species were observed. To combat emerging resistance in anaerobes, monitoring resistance and conducting surveillance are essential.</p

    Mid-circuit qubit measurement and rearrangement in a 171^{171}Yb atomic array

    Full text link
    Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillae) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom based platforms, a scalable, high-fidelity approach to mid-circuit measurement that retains the ancilla qubits in a state suitable for future operations has not yet been demonstrated. In this work, we perform imaging using a narrow-linewidth transition in an array of tweezer-confined 171^{171}Yb atoms to demonstrate nondestructive state-selective and site-selective detection. By applying site-specific light shifts, selected atoms within the array can be hidden from imaging light, which allows a subset of qubits to be measured while causing only percent-level errors on the remaining qubits. As a proof-of-principle demonstration of conditional operations based on the results of the mid-circuit measurements, and of our ability to reuse ancilla qubits, we perform conditional refilling of ancilla sites to correct for occasional atom loss, while maintaining the coherence of data qubits. Looking towards true continuous operation, we demonstrate loading of a magneto-optical trap with a minimal degree of qubit decoherence.Comment: 9 pages, 6 figure

    Antimicrobial susceptibility profile of clinically relevant Bacteroides, Phocaeicola, Parabacteroides and Prevotella species, isolated by eight laboratories in the Netherlands

    Get PDF
    OBJECTIVES: Recently, reports on antimicrobial-resistant Bacteroides and Prevotella isolates have increased in the Netherlands. This urged the need for a surveillance study on the antimicrobial susceptibility profile of Bacteroides, Phocaeicola, Parabacteroides and Prevotella isolates consecutively isolated from human clinical specimens at eight different Dutch laboratories. METHODS: Each laboratory collected 20-25 Bacteroides (including Phocaeicola and Parabacteroides) and 10-15 Prevotella isolates for 3 months. At the national reference laboratory, the MICs of amoxicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem, metronidazole, clindamycin, tetracycline and moxifloxacin were determined using agar dilution. Isolates with a high MIC of metronidazole or a carbapenem, or harbouring cfiA, were subjected to WGS. RESULTS: Bacteroides thetaiotaomicron/faecis isolates had the highest MIC90 values, whereas Bacteroides fragilis had the lowest MIC90 values for amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem and moxifloxacin. The antimicrobial profiles of the different Prevotella species were similar, except for amoxicillin, for which the MIC50 ranged from 0.125 to 16 mg/L for Prevotella bivia and Prevotella buccae, respectively. Three isolates with high metronidazole MICs were sequenced, of which one Bacteroides thetaiotaomicron isolate harboured a plasmid-located nimE gene and a Prevotella melaninogenica isolate harboured a nimA gene chromosomally.Five Bacteroides isolates harboured a cfiA gene and three had an IS element upstream, resulting in high MICs of carbapenems. The other two isolates harboured no IS element upstream of the cfiA gene and had low MICs of carbapenems. CONCLUSIONS: Variations in resistance between species were observed. To combat emerging resistance in anaerobes, monitoring resistance and conducting surveillance are essential

    The Key Events Dose-Response Framework: Its Potential for Application to Foodborne Pathogenic Microorganisms

    Get PDF
    The Key Events Dose-Response Framework (KEDRF) is an analytical approach that facilitates the use of currently available data to gain insight regarding dose-response relationships. The use of the KEDRF also helps identify critical knowledge gaps that once filled, will reduce reliance on assumptions. The present study considers how the KEDRF might be applied to pathogenic microorganisms, using fetal listeriosis resulting from maternal ingestion of food contaminated with L. monocytogenes as an initial example. Major biological events along the pathway between food ingestion and the endpoint of concern are systematically considered with regard to dose (i.e., number of organisms), pathogen factors (e.g., virulence), and protective host mechanisms (e.g., immune response or other homeostatic mechanisms). It is concluded that the KEDRF provides a useful structure for systematically evaluating the complex array of host and pathogen factors that influence the dose-response relationship. In particular, the KEDRF supports efforts to specify and quantify the sources of variability, a prerequisite to strengthening the scientific basis for food safety decision making
    corecore