5 research outputs found
Bringing online adaptive radiotherapy to a standard C-arm linac
Current online adaptive radiotherapy (oART) workflows require dedicated equipment. Our aim was to develop and implement an oART workflow for a C-arm linac which can be performed using standard clinically available tools. A workflow was successfully developed and implemented. Three patients receiving palliative radiotherapy for bladder cancer were treated, with 33 of 35 total fractions being delivered with the cone-beam computed tomography (CBCT)-guided oART workflow. Average oART fraction duration was 24 min from start of CBCT acquisition to end of beam on. This work shows how oART could be performed without dedicated equipment, broadening oART availability for application at existing treatment machines
Experiences with MRI-guided brachytherapy for radiorecurrent prostate cancer
MR-guided brachytherapy offers a focal salvage treatment for the local recurrence in case of isolated locally recurrent prostate cancer in the prostate and/or seminal vesicles after primary radiotherapy. By focusing on only the local recurrence instead of the whole prostate, chances of additional toxicity of the bladder, urethra and rectum can be minimized. In almost all patients, the treatment leads to a good initial treatment response that persists in about half of patients, while others will develop progressive disease later on. For selecting suitable patients, factors such as preexistent urinary- and bowel complaints, localization and size of the recurrence, PSA doubling time and time between primary radiotherapy and development of the recurrence are relevant. MR-guided brachytherapy can provide a suitable salvage strategy, with the aims of deferring androgen deprivation therapy and a chance of cure
Re-salvage MRI-guided Focal High-dose-rate Brachytherapy for Locally Recurrent Prostate Cancer
Prostate cancer recurrences are common, even with twenty-first-century primary prostate cancer treatment modalities. The most common salvage treatment is (delayed) hormonal therapy, which is often associated with serious side-effects. Due to the risk of significant toxicity, whole-gland targeted salvage treatments remain unpopular. Consequently, developments in focal therapies have arisen. Magnetic resonance imaging (MRI)-guided focal salvage high-dose-rate brachytherapy (HDR-BT) is a novel treatment aiming for minimal toxicity in recurrent prostate cancer patients. Repeating focal treatment could, therefore, be possible in case of post-salvage recurrence. We report the case of a 77-year-old man who underwent repeat focal HDR-BT
Comparison of Library of Plans with two daily adaptive strategies for whole bladder radiotherapy
Background and purpose: Whole bladder radiotherapy is challenging due to inter- and intrafraction size and shape changes. To account for these changes, currently a Library of Plans (LoP) technique is often applied, but daily adaptive radiotherapy is also increasingly becoming available. The aim of this study was to compare LoP with two magnetic resonance imaging guided radiotherapy (MRgRT) strategies by comparing target coverage and volume of healthy tissue inside the planning target volume (PTV) for whole bladder treatments. Methods and materials: Data from 25 MRgRT lymph node oligometastases treatments (125 fractions) were used, with three MRI scans acquired at each fraction at 0, 15 and 30 min. Bladders were delineated and used to evaluate three strategies: 1) LoP with two plans for a 15 min fraction, 2) MRgRT15min for a 15 min fraction and 3) MRgRT30min for a 30 min fraction. The volumes of healthy tissue inside and bladder outside the PTV were analyzed on the simulated post-treatment images. Results: MRgRT30min had 120% and 121% more healthy tissue inside the PTV than LoP and MRgRT15min. For LoP slightly more target outside the PTV was found than for MRgRT30min and MRgRT15min, with median 0% (range 0-23%) compared to 0% (0-20%) and 0% (0-10%), respectively. Conclusions: Taking into account both target coverage and volume of healthy tissue inside the PTV, MRgRT15min performed better than LoP and MRgRT30min for whole bladder treatments. A 15 min daily adaptive radiotherapy workflow is needed to potentially benefit from replanning compared to LoP
Bringing online adaptive radiotherapy to a standard C-arm linac
Current online adaptive radiotherapy (oART) workflows require dedicated equipment. Our aim was to develop and implement an oART workflow for a C-arm linac which can be performed using standard clinically available tools. A workflow was successfully developed and implemented. Three patients receiving palliative radiotherapy for bladder cancer were treated, with 33 of 35 total fractions being delivered with the cone-beam computed tomography (CBCT)-guided oART workflow. Average oART fraction duration was 24 min from start of CBCT acquisition to end of beam on. This work shows how oART could be performed without dedicated equipment, broadening oART availability for application at existing treatment machines