83 research outputs found

    Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    Get PDF
    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. Here we use single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment.

    Ribosome Display Selection of a Murine IgG1 Fab Binding Affibody Molecule Allowing Species Selective Recovery Of Monoclonal Antibodies

    Get PDF
    Affinity reagents recognizing constant parts of antibody molecules are invaluable tools in immunotechnology applications, including purification, immobilization, and detection of immunoglobulins. In this article, murine IgG1, the primary isotype of monoclonal antibodies (mAbs) was used as target for selection of novel binders from a combinatorial ribosome display (RD) library of 1011 affibody molecules. Four rounds of selection using three different mouse IgG1 mAbs as alternating targets resulted in the identification of binders with broad mIgG1 recognition and dissociation constants (KD) in the low nanomolar to low micromolar range. For one of the binders, denoted Zmab25, competition in binding to full length mIgG1 by a streptococcal protein G (SPG) fragment and selective affinity capture of mouse IgG1 Fab fragments after papain cleavage of a full mAb suggest that an epitope functionally overlapping with the SPG-binding site in the CH1 domain of mouse IgG1 had been addressed. Interestingly, biosensor-based binding experiments showed that neither human IgG1 nor bovine Ig, the latter present in fetal bovine serum (FBS) was recognized by Zmab25. This selective binding profile towards murine IgG1 was successfully exploited in species selective recovery of two different mouse mAbs from complex samples containing FBS, resembling a hybridoma culture supernatant

    Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Get PDF
    Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms

    Cell fractionation

    No full text
    International audienceProtein function is generally dependent on its subcellular localisation. In gram-negative bacteria such as Escherichia coli, a protein can be targeted to five different compartments: the cytoplasm, the inner membrane, the periplasm, the outer membrane and the extracellular medium. Different approaches can be used to determine the protein localisation within cell such as in silico identification of protein signal sequences and motifs, electron microscopy and immunogold labelling, optical fluorescence microscopy, and biochemical technics. In this chapter, we describe a simple and efficient method to isolate the different compartments of Escherichia coli by a fractionation method and to determine the presence of the protein of interest. For inner membrane proteins we propose a method to discriminate between integral and peripheral membrane proteins
    • …
    corecore