16 research outputs found

    ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π• Π€Π•ΠΠžΠ›Π¬ΠΠ«Π₯ Π‘ΠžΠ•Π”Π˜ΠΠ•ΠΠ˜Π™ Π’ Π”Π•Π—Π˜ΠΠ€Π•ΠšΠ¦Π˜ΠžΠΠΠ«Π₯ БРЕДБВВАΠ₯

    Get PDF
    The aspects of analytical determination of disinfectants derivatives of the phenol series Π°rΠ΅ considered. The possibility of codetermination of five derivatives of this series in different disinfectants using the RP-HPLC method in the isocratic mode (UV detection) is shown. Alternatively, the possibilities of the determination with the use of spectrophotometry and GC methods are considered. This study and previous ones showed that the extraction of phenol derivatives by organic solvents from Π° wide range of disinfectants is feasible only in some cases, preferably with the use of hexane as an extractant. Further spectrophotometry of hexane extracts does not always enable to correctly compensate for the effect of background impurities and requires an additional separation of the components. The literature data and experimental results suggest that it is more efficient to analyze the whole series of disinfectants in isopropanol (sometimes in water) by chromatographic methods, preferably by HPLC. Sample preparation reduces to the solubilization of batches of ready-made disinfectants in isopropanol/water. It is optimal to carry out the chromatographic study using elution with acetonitrile-based systems (for example, БН3Π‘N:Н2O, 60:40) providing the correct determination (Ξ» = 280 nΡ‚) of phenol derivatives. The completeness of extraction (if the extraction method is used), as well as the metrology aspects of all the analytical determination is set directly in Π° laboratory during the realization of procedures of introduction/validation according to the internal documents of the system quality management for the relevant structural unit.РассмотрСны аспСкты аналитичСского опрСдСлСния Π΄Π΅Π·ΠΈΠ½Ρ„Π΅ΠΊΡ‚Π°Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ряда Ρ„Π΅Π½ΠΎΠ»Π°. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ совмСстного опрСдСлСния пяти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π°Π½Π½ΠΎΠ³ΠΎ ряда Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄Π΅Π·ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… срСдствах с использованиСм ОЀ Π’Π­Π–Π₯ Π² изократичСском Ρ€Π΅ΠΆΠΈΠΌΠ΅ (Π£Π€-Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅). ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΎ рассмотрСны возмоТности опрСдСлСния с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² спСктрофотомСтрии ΠΈ Π“Π–Π₯. НастоящСС ΠΈ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ экстракционноС ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏΡ‹ Ρ„Π΅Π½ΠΎΠ»Π° органичСскими растворитСлями ΠΈΠ· ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ спСктра Π΄Π΅Π·ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… срСдств доступно Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях, прСимущСствСнно ΠΏΡ€ΠΈ использованиСм гСксана Π² качСствС экстрагСнта. Π’ дальнСйшСм спСктрофотомСтрированиС гСксановых экстрактов Π½Π΅ всСгда позволяСт ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎ ΡΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ влияниС Ρ„ΠΎΠ½ΠΎΠ²Ρ‹Ρ… примСсСй ΠΈ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ раздСлСния ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² экспСримСнтов, стоит ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Π΅Π΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ Π°Π½Π°Π»ΠΈΠ· всСй Π»ΠΈΠ½Π΅ΠΉΠΊΠΈ Π΄Π΅Π·ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π² ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ»Π΅ (ΠΈΠ½ΠΎΠ³Π΄Π° Π² Π²ΠΎΠ΄Π΅) хроматографичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ, отдавая ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠ΅ Π’Π­Π–Π₯. ΠŸΡ€ΠΈ этом ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° сводится ΠΊ ΡΠΎΠ»ΡŽΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ навСсок Π³ΠΎΡ‚ΠΎΠ²Ρ‹Ρ… срСдств Π² ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ»Π΅/Π²ΠΎΠ΄Π΅. Π₯роматографичСскоС исслСдованиС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π² качСствС ΡΠ»ΡŽΠ΅Π½Ρ‚Π° систСм Π½Π° основС Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π°, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ (Ξ» = 280 Π½ΠΌ) ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ„Π΅Π½ΠΎΠ»Π°

    THE DETERMINATION OF PHENOLS COMPOUNDS IN DISINFECTANTS

    Get PDF
    The aspects of analytical determination of disinfectants derivatives of the phenol series Π°rΠ΅ considered. The possibility of codetermination of five derivatives of this series in different disinfectants using the RP-HPLC method in the isocratic mode (UV detection) is shown. Alternatively, the possibilities of the determination with the use of spectrophotometry and GC methods are considered. This study and previous ones showed that the extraction of phenol derivatives by organic solvents from Π° wide range of disinfectants is feasible only in some cases, preferably with the use of hexane as an extractant. Further spectrophotometry of hexane extracts does not always enable to correctly compensate for the effect of background impurities and requires an additional separation of the components. The literature data and experimental results suggest that it is more efficient to analyze the whole series of disinfectants in isopropanol (sometimes in water) by chromatographic methods, preferably by HPLC. Sample preparation reduces to the solubilization of batches of ready-made disinfectants in isopropanol/water. It is optimal to carry out the chromatographic study using elution with acetonitrile-based systems (for example, БН3Π‘N:Н2O, 60:40) providing the correct determination (Ξ» = 280 nΡ‚) of phenol derivatives. The completeness of extraction (if the extraction method is used), as well as the metrology aspects of all the analytical determination is set directly in Π° laboratory during the realization of procedures of introduction/validation according to the internal documents of the system quality management for the relevant structural unit

    The determination of polymeric derivatives of guanidine in disinfectants by two-phase titration

    No full text
    The article considers the results of identifying the disinfectant water-soluble guanidines polymers by means of methods including spectrophotometry, infrared spectroscopy, fluorescence analysis, as well as the use of gold nanoparticles. The present work describes the results of polyhexamethyleneguanidine (PHMG) identification in finished compositions. It is shown that auxiliary components such as quaternary ammonium compounds prevent the identification of the PHMG in the mixture. So, most known methods are ineffective or require additional manipulations. The method of quantitative analysis of polyhexamethyleneguanidine (PHMG) and polyhexamethylenebiguanidine (PHMB) in disinfectants by means of two-phase titration with sodium dodecyl sulfate in the presence of bromophenol blue indicator was proposed. The end point was detected visually. This method allows taking into account the additive contributions of quaternary ammonium compounds in PHMG titration results. In this case, the titration at all stages of the determination of PHMG is conducted with sodium dodecy sulfate solutions with the same concentrations and the same weighed portions of sample are taking. Other disinfectants, namely hydrogen peroxide, alcohols, primary, secondary, tertiary amines, including N,N-bis(3-aminopropyl)dodecylamine present in the solution do not interfere with the identification of PHMG

    Alcoxotechnology for obtaining heat-resistant materials based on rhenium and ruthenium

    Get PDF
    Objectives. To develop physical and chemical bases and methods to obtain rhenium–ruthenium isoproxide Re4-yRuyO6(OPri)10 β€”a precursor for obtaining a high-temperature alloyβ€”from ruthenium acetylacetonate and rhenium isoproxide acquired by electrochemical methods.Methods. IR spectroscopy (EQUINOX 55 Bruker, Germany), X-ray phase and elemental analyses, energy-dispersive microanalysis (EDMA, SEM JSM5910-LV, analytical system AZTEC), powder X-ray diffraction (diffractometer D8 Advance Bruker, Germany), experimental station XSA beamline at the Kurchatov Synchrotron Radiation Source.Results. The isoproxide complex of rhenium–ruthenium Re4-yRuyO6(OPri)10Β was obtained, and its composition and structure were established. Previously conducted quantum chemical calculations on the possibility of replacing rhenium atoms with ruthenium atoms in the isopropylate complex were experimentally proven, and the influence of the electroconductive additive on the composition of the obtained alloy was revealed.Conclusions. Physical and chemical bases and methods for obtaining rhenium–ruthenium isoproxide Re4-yRuyO6(OPri)10Β were developed. The possibility of using rhenium–ruthenium Re4-yRuyO6(OPri)10Β as a precursor in the production of ultra- and nanodisperse rhenium–ruthenium alloy powders at a record low temperature of 650Β°C were shown

    АлкоксотСхнология получСния ΠΆΠ°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° основС рСния ΠΈ рутСния

    Get PDF
    Objectives. To develop physical and chemical bases and methods to obtain rhenium–ruthenium isoproxide Re4-yRuyO6(OPri)10 β€”a precursor for obtaining a high-temperature alloyβ€”from ruthenium acetylacetonate and rhenium isoproxide acquired by electrochemical methods.Methods. IR spectroscopy (EQUINOX 55 Bruker, Germany), X-ray phase and elemental analyses, energy-dispersive microanalysis (EDMA, SEM JSM5910-LV, analytical system AZTEC), powder X-ray diffraction (diffractometer D8 Advance Bruker, Germany), experimental station XSA beamline at the Kurchatov Synchrotron Radiation Source.Results. The isoproxide complex of rhenium–ruthenium Re4-yRuyO6(OPri)10Β was obtained, and its composition and structure were established. Previously conducted quantum chemical calculations on the possibility of replacing rhenium atoms with ruthenium atoms in the isopropylate complex were experimentally proven, and the influence of the electroconductive additive on the composition of the obtained alloy was revealed.Conclusions. Physical and chemical bases and methods for obtaining rhenium–ruthenium isoproxide Re4-yRuyO6(OPri)10Β were developed. The possibility of using rhenium–ruthenium Re4-yRuyO6(OPri)10Β as a precursor in the production of ultra- and nanodisperse rhenium–ruthenium alloy powders at a record low temperature of 650Β°C were shown.Π¦Π΅Π»ΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских основ ΠΈ способов получСния изопроксида рСния-рутСния Re4-yRuyO6(OPri)10 ΠΈΠ· Π°Ρ†Π΅Ρ‚ΠΈΠ»Π°Ρ†Π΅Ρ‚ΠΎΠ½Π°Ρ‚Π° рутСния ΠΈ изопроксида рСния, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ элСктрохимичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ – прСкурсора получСния высокотСмпСратурного сплава.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИК-спСктроскопия (EQUINOX 55 Bruker, ГСрмания), Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²Ρ‹ΠΉ ΠΈ элСмСнтный Π°Π½Π°Π»ΠΈΠ·, энСргодиспСрсионный ΠΌΠΈΠΊΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ· (Π­Π”ΠœΠ, БЭМ JSM5910–LV, аналитичСская систСма AZTEC), ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²Π°Ρ рСнтгСновская дифракция (Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ D8 Advance Bruker, ГСрмания), ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ станция «РБА» ΠšΡƒΡ€Ρ‡Π°Ρ‚ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ источника синхротронного излучСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ изопроксидный комплСкс рСния-рутСния Re4-yRuyO6(OPri)10Β , ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Π΅Π³ΠΎ состав ΠΈ строСниС. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Ρ€Π°Π½Π΅Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎ-химичСскиС расчСты, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎ возмоТности замСщСния Π°Ρ‚ΠΎΠΌΠΎΠ² рСния Π°Ρ‚ΠΎΠΌΠ°ΠΌΠΈ рутСния Π² ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠΈΠ»Π°Ρ‚Π½ΠΎΠΌ комплСксС. ВыявлСно влияниС элСктропроводящСй Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Π½Π° состав ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ сплава.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС основы ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ способы получСния изопроксида рСния-рутСния Re4-yRuyO6(OPri)10Β , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² качСствС ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠ° ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°- ΠΈ нанодиспСрсных ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² сплавов Ρ€Π΅Π½ΠΈΠΉ-Ρ€ΡƒΡ‚Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ Ρ€Π΅ΠΊΠΎΡ€Π΄Π½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 650 Β°C

    ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ содСрТания ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π³ΡƒΠ°Π½ΠΈΠ΄ΠΈΠ½Π° Π² антисСптичСских срСдствах ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π²ΡƒΡ…Ρ„Π°Π·Π½ΠΎΠ³ΠΎ титрования

    No full text
    The article considers the results of identifying the disinfectant water-soluble guanidines polymers by means of methods including spectrophotometry, infrared spectroscopy, fluorescence analysis, as well as the use of gold nanoparticles. The present work describes the results of polyhexamethyleneguanidine (PHMG) identification in finished compositions. It is shown that auxiliary components such as quaternary ammonium compounds prevent the identification of the PHMG in the mixture. So, most known methods are ineffective or require additional manipulations. The method of quantitative analysis of polyhexamethyleneguanidine (PHMG) and polyhexamethylenebiguanidine (PHMB) in disinfectants by means of two-phase titration with sodium dodecyl sulfate in the presence of bromophenol blue indicator was proposed. The end point was detected visually. This method allows taking into account the additive contributions of quaternary ammonium compounds in PHMG titration results. In this case, the titration at all stages of the determination of PHMG is conducted with sodium dodecy sulfate solutions with the same concentrations and the same weighed portions of sample are taking. Other disinfectants, namely hydrogen peroxide, alcohols, primary, secondary, tertiary amines, including N,N-bis(3-aminopropyl)dodecylamine present in the solution do not interfere with the identification of PHMG.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ титримСтричСский ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния солСй полигСксамСтилСнгуанидина ΠΈ полигСксамСтилСнбигуанидина Π² антисСптичСских срСдствах. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π²ΡƒΡ…Ρ„Π°Π·Π½ΠΎΠ³ΠΎ титрования Π² систСмС Π²ΠΎΠ΄Π°-Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΎΡ€ΠΌ раствором Π΄ΠΎΠ΄Π΅Ρ†ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° натрия Π² присутствии ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° Π±Ρ€ΠΎΠΌΡ„Π΅Π½ΠΎΠ»ΠΎΠ²ΠΎΠ³ΠΎ синСго, ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠ΅ титрования устанавливали Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ слоТной ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ оборудования, отличаСтся ΠΌΠ°Π»Ρ‹ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ Π°Π½Π°Π»ΠΈΠ·Π° (10-15 ΠΌΠΈΠ½) ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ для провСдСния контроля качСства антисСптичСских срСдств

    Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI

    Full text link
    The present study reports alterations of task-based functional brain connectivity in a group of 11 cosmonauts after a long-duration spaceflight, compared to a healthy control group not involved in the space program. To elicit the postural and locomotor sensorimotor mechanisms that are usually most significantly impaired when space travelers return to Earth, a plantar stimulation paradigm was used in a block design fMRI study. The motor control system activated by the plantar stimulation involved the pre-central and post-central gyri, SMA, SII/operculum, and, to a lesser degree, the insular cortex and cerebellum. While no post-flight alterations were observed in terms of activation, the network-based statistics approach revealed task-specific functional connectivity modifications within a broader set of regions involving the activation sites along with other parts of the sensorimotor neural network and the visual, proprioceptive, and vestibular systems. The most notable findings included a post-flight increase in the stimulation-specific connectivity of the right posterior supramarginal gyrus with the rest of the brain; a strengthening of connections between the left and right insulae; decreased connectivity of the vestibular nuclei, right inferior parietal cortex (BA40) and cerebellum with areas associated with motor, visual, vestibular, and proprioception functions; and decreased coupling of the cerebellum with the visual cortex and the right inferior parietal cortex. The severity of space motion sickness symptoms was found to correlate with a post-to pre-flight difference in connectivity between the right supramarginal gyrus and the left anterior insula. Due to the complex nature and rapid dynamics of adaptation to gravity alterations, the post-flight findings might be attributed to both the long-term microgravity exposure and to the readaptation to Earth's gravity that took place between the landing and post-flight MRI session. Nevertheless, the results have implications for the multisensory reweighting and gravitational motor system theories, generating hypotheses to be tested in future research
    corecore