4,574 research outputs found
Lithium in field Am and normal A-F-type stars
Preliminary abundances of lithium and a few other elements have been obtained
for 31 field Am stars with good Hipparcos parallaxes, as well as for 36 normal
A and F stars. Radial and projected rotational velocities were determined as
well. We examine the Li abundance as a function of the stellar parameters: for
normal stars, it is clearly bimodal for Teff < 7500 K, while Am-Fm stars are
all somewhat Li-deficient in this range. The most Li-deficient stars - either
Am or normal - tend to be at least slightly evolved, but the reverse is not
true.Comment: 4 pages, 2 figures, poster presented at the conference "Element
stratification in stars, 40 years of atomic diffusion", eds. G. Alecian, O.
Richard and S. Vauclair, EAS Publication Series, in pres
Absolute magnitudes and kinematics of CP stars from Hipparcos data
The position in the HR diagram and the kinematic characteristics of different
kinds of CP stars of the upper main sequence are obtained using the LM method
(Luri et al., 1996). Most of the CP stars are main sequence stars occupying the
whole width of the sequence. From a kinematic point of view, they belong to the
young disk population (ages < 1.5 Gyr). It has also been found that, on
kinematic grounds, the behaviour of lambda Bootis stars is similar to the one
observed for normal stars of the same spectral range. On the other hand, roAp
and noAp stars show the same kinematic characteristics. The peculiar velocity
distribution function has been decomposed into a sum of three dimensional
gaussians and the presence of Pleiades, Sirius and Hyades moving groups has
been clearly established. Finally, a small number of CP stars are found to be
high-velocity objects.Comment: 8 pages, 1 figure, to appear in: Proc. of the 26th workshop of the
European Working Group on CP stars, eds. P. North, A. Schnell and J.
Ziznovsky, Contrib. Astr. Obs. Skalnate Pleso Vol. 27, No
Analysis of clean coal technology in Nigeria for energy generation
Abstract: An analysis of clean coal technologies for the recovery of energy from Nigerian coals was carried out. The coal mines studied are Onyeama, Ogwashi, Ezimo, Inyi, Amasiodo, Okaba, Lafia-Obi, Owukpa Owukpa, Ogboyoga and Okpara. The estimated reserves of the ten coal deposit amount to 2.1 Gt, which is about 84 % of the total coal reserves of the country 2.5 Gt of coal Nigeria. The key clean coal technologies studied are Ultra-Supercritical Combustion (USC), Supercritical-Fluidised Bed Combustion (FBC), Integrated Gasification Combined Cycle (IGCC) and Coal bed Methane (CBM) and the results were compared with conventional subcritical pulverised fuel combustion (PF). The total potential energy recovery from these technologies are: PF 5800 TWh, FBC 7250 TWh, IGCC 7618 TWh, and USC 8519 TWh. This indicates an increase of about 31% in the total electricity generation if USC technology is used instead of the conventional sub-critical PF technology..
The radio lighthouse CU Virginis: the spindown of a single main sequence star
The fast rotating star CU Virginis is a magnetic chemically peculiar star
with an oblique dipolar magnetic field. The continuum radio emission has been
interpreted as gyrosyncrotron emission arising from a thin magnetospheric
layer. Previous radio observations at 1.4 GHz showed that a 100% circular
polarized and highly directive emission component overlaps to the continuum
emission two times per rotation, when the magnetic axis lies in the plane of
the sky. This sort of radio lighthouse has been proposed to be due to cyclotron
maser emission generated above the magnetic pole and propagating
perpendicularly to the magnetic axis. Observations carried out with the
Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this
discovery show that this radio emission is still present, meaning that the
phenomenon responsible for this process is steady on a timescale of years. The
emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On
the light of recent results on the physics of the magnetosphere of this star,
the possibility of plasma radiation is ruled out. The characteristics of this
radio lighthouse provides us a good marker of the rotation period, since the
peaks are visible at particular rotational phases. After one year, they show a
delay of about 15 minutes. This is interpreted as a new abrupt spinning down of
the star. Among several possibilities, a quick emptying of the equatorial
magnetic belt after reaching the maximum density can account for the magnitude
of the breaking. The study of the coherent emission in stars like CU Vir, as
well as in pre main sequence stars, can give important insight into the angular
momentum evolution in young stars. This is a promising field of investigation
that high sensitivity radio interferometers such as SKA can exploit.Comment: Accepted to MNRAS, 8 pages, 7 figures, updated versio
The prescribing of prisms in clinical practice
The use of prisms in cases of decompensated heterophoria is an established treatment modality. The clinical literature lacks consensus upon the appropriate use of prisms, and fails to provide the necessary evidence base. While the experimental literature can guide the practitioner, the lack of double-blind, placebo-controlled clinical studies needs to be addressed
Hexakis(dimethyl sulfoxide-κO)chromium(III) trichloride
In the title compound, [Cr(C2H6OS)6]Cl3, each CrIII ion is located on a three-fold inversion axis and is coordinated by six dimethylsulfoxide ligands [Cr—O = 1.970 (2)–1.972 (2) Å; O—Cr—O = 88.19 (9) and 91.81 (9)°] in a slightly distorted octahedral geometry. The Cl− anions take part in the formation of weak C—H⋯Cl hydrogen bonds, which contribute to the crystal packing stabilization
Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density
The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA71-PBzMA100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm(-3) to approximately 1.74 g cm(-3), as judged by disk centrifuge photosedimentometry (DCP). Combining the DCP and SAXS data suggests that essentially no deformation of the PBzMA cores occurs during nanoparticle adsorption onto the silica particles
HD 178892 - a cool Ap star with extremely strong magnetic field
We report a discovery of the Zeeman resolved spectral lines, corresponding to
the extremely large magnetic field modulus =17.5 kG, in the cool Ap star HD
178892. The mean longitudinal field of this star reaches 7.5 kG, and its
rotational modulation implies the strength of the dipolar magnetic component
Bp>=23 kG. We have revised rotation period of the star using the All Sky
Automated Survey photometry and determined P=8.2478 d. Rotation phases of the
magnetic and photometric maxima of the star coincide with each other. We
obtained Geneva photometric observation of HD 178892 and estimated
Teff=7700+/-250 K using photometry and the hydrogen Balmer lines. Preliminary
abundance analysis reveals abundance pattern typical of rapidly oscillating Ap
stars.Comment: Accepted by Astronomy & Astrophysics; 4 pages, 4 figure
Barium stars, galactic populations and evolution
In this paper HIPPARCOS astrometric and kinematical data together with radial velocities from other sources are used to calibrate both luminosity and kinematics parameters of Ba stars and to classify them. We confirm the results of our previous paper (where we used data from the HIPPARCOS Input Catalogue), and show that Ba stars are an inhomogeneous group. Five distinct classes have been found i.e. some halo stars and four groups belonging to disk population: roughly super-giants, two groups of giants (one on the giant branch, the other at the clump location) and dwarfs, with a few subgiants mixed with them. The confirmed or suspected duplicity, the variability and the range of known orbital periods found in each group give coherent results supporting the scenario for Ba stars that are not too highly massive binary stars in any evolutionary stages but that all were previously enriched with Ba from a more evolved companion. The presence in the sample of a certain number of ``false'' Ba stars is confirmed. The estimates of age and mass are compatible with models for stars with a strong Ba anomaly. The mild Ba stars with an estimated mass higher than 3Msun_ may be either stars Ba enriched by themselves or ``true'' Ba stars, which imposes new constraints on models
Stellar model atmospheres with magnetic line blanketing
Model atmospheres of A and B stars are computed taking into account magnetic
line blanketing. These calculations are based on the new stellar model
atmosphere code LLModels which implements direct treatment of the opacities due
to the bound-bound transitions and ensures an accurate and detailed description
of the line absorption. The anomalous Zeeman effect was calculated for the
field strengths between 1 and 40 kG and a field vector perpendicular to the
line of sight. The model structure, high-resolution energy distribution,
photometric colors, metallic line spectra and the hydrogen Balmer line profiles
are computed for magnetic stars with different metallicities and are discussed
with respect to those of non-magnetic reference models. The magnetically
enhanced line blanketing changes the atmospheric structure and leads to a
redistribution of energy in the stellar spectrum. The most noticeable feature
in the optical region is the appearance of the 5200 A depression. However, this
effect is prominent only in cool A stars and disappears for higher effective
temperatures. The presence of a magnetic field produces opposite variation of
the flux distribution in the optical and UV region. A deficiency of the UV flux
is found for the whole range of considered effective temperatures, whereas the
``null wavelength'' where flux remains unchanged shifts towards the shorter
wavelengths for higher temperatures.Comment: accepted by Astronomy & Astrophysic
- …