34 research outputs found

    Investigation of the effect of two new initiators of p-aminoazobenzene and diazoaminobenzene on the properties of polyaniline

    No full text

    CORROSION INHIBITION OF COPPER IN ACID MEDIUM BY DRUGS: EXPERIMENTAL AND THEORETICAL APPROACHES

    No full text
    The inhibition performances of nafcillin (III), methicillin (II) and penicillin G (I) on the corrosion of copper in HCl was studied and tested by weight loss, Tafel polarization, SEM, UV-vis spectrophotometry, molecular dynamics method and quantum chemical calculations. Polarization curves indicated that the studied inhibitors act as mixed-type inhibitors. The values of inhibition efficiency and surface coverage were found to follow the order: Blank ads, indicated that the adsorption of three inhibitors was a spontaneous process. The SEM micrographs confirmed the protection of copper in a 1 M HCl solution by penicillin G, nafcillin, and methicillin. The shape of the UV/vis spectra of inhibitors in the presence of the immersion of Cu showed a strong support to the possibility of the chemisorbed layer formation on Cu surface by nafcillin (between nafcillin and Copper) and physisorption between penicillin and methicillin with copper. DFT calculations were performed to provide further insight into the inhibition efficiencies which were determined experimentally. Molecular dynamics (MD) simulations were applied to find the most stable configuration and adsorption energies of penicillin G, nafcillin and methicillin molecules on Cu (110) surface. The interaction energy followed the order: nafcillin (III)> methicillin (II)> penicillin G (I), which confirmed that nafcillin has the strongest interaction with the metal surface. The obtained results from experimental and theoretical methods were in reasonable agreement. &nbsp

    Electroreduction of carbon dioxide to formate using highly efficient bimetallic Sn-Pd aerogels

    No full text
    Electrochemical reduction of carbon dioxide (CO2) to valuable materials is a promising approach to suppress atmospheric CO2 levels. In order to bring this strategy to a commercial scale, the design of efficient, cost-effective, and robust catalysts is essential. Current advances in CO2 conversion technology use bimetallic components that enhance electrocatalysis via the introduction of binding site diversity. In this work, Sn-Pd bimetallic aerogels supported by carbon nanotubes (Sn-Pd/CNT) demonstrate selective electroreduction of CO2 to formate in ambient conditions. Amino substituents were introduced as an additional CO2 capture site (Sn-Pd/CNT-NH2), further enhancing the electrocatalytic activity and resulting in 91% formate selectively and a current density of -39 mA cm-2 at -0.4 V vs. RHE. The results demonstrate the potential of alloying Sn with other earth-abundant metals to promote the electrochemical conversion of CO2 to value-added materials. We believe this study provides valuable insights into the intricate relationship of bimetallic aerogels and shows the potential of the -NH2 group as a facilitator for CO2 capture and conversion that will inspire new forays into the development of competitive catalytic systems.ChemE/Materials for Energy Conversion & Storag

    Effect of peptide aerogel composite on silver nanoparticles as a catalyst for electrochemical CO<sub>2</sub> reduction

    No full text
    Electrochemical reduction of carbon dioxide (CO2RR) product distribution has been found to be dependent on several key factors, such as catalyst surface morphology, stability, and porosity. Metal-modified carbon-based materials have received a lot of attention in CO2RR. However, designing a highly active metal carbon catalyst for CO2RR utilizing low-cost chemical precursors remains a challenge. Here, a series of myristic acid-Phe-Phe peptide (MA-FF) aerogel materials containing graphene oxide (Gox) and Ag nanoparticles have been prepared for electrochemical CO2RR. The morphologies of the composites were studied by scanning electron microscopy (SEM), and their surface compositions were determined using X-ray photoelectron spectroscopy (XPS). While the peptide aerogel alone showed no catalytic activity for CO2 electroreduction, the addition of Ag nanoparticles results in a Faradaic efficiency (FE) of 46% for electroreduction of CO2 to CO at an overpotential of − 0.8 V vs. RHE. Incorporation of Gox in the aerogel increases the FE to 88% and allows CO2 reduction at a lower overpotential of − 0.7 V vs. RHE. Using highly porous peptide aerogels-Gox in addition to the metal active center provides an enhanced and new method for CO2 conversion using low environmental impact bio-based aerogels.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.ChemE/Materials for Energy Conversion and Storag
    corecore