1,474 research outputs found

    Jet Quenching in Non-Conformal Holography

    Full text link
    We use our non-conformal holographic bottom-up model for QCD described in 1012.0116 to further study the effect of the QCD trace anomaly on the energy loss of both light and heavy quarks in a strongly coupled plasma. We compute the nuclear modification factor RAAR_{AA} for bottom and charm quarks in an expanding plasma with Glauber initial conditions. We find that the maximum stopping distance of light quarks in a non-conformal plasma scales with the energy with a temperature (and energy) dependent effective power.Comment: 4 pages, 1 figure. Proceedings for Quark Matter 201

    Integration of Evidence-Based Practice in Nursing Education

    Get PDF
    Evidence based practice (EBP) has gained momentum globally, to provide effective and efficient health care. Although EBP has evolved to a great extent over the last two decades and is accepted as an important concept by all health care professionals, its integration in practice is still challenging. Integration of EBP in nursing profession both in nursing practice and nursing education is an important issue. This article describes the experience of the authors in integrating evidence based practice in nursing education in Manipal University. It focuses on the training of nurse educators in EBP, alignment of EBP in curriculum and EBP practicum in curriculum so as to enable a nurse to identify evidences, make appropriate clinical decisions and utilize EBP in rendering scientific and quality patient care

    Polyakov Loops in Strongly-Coupled Plasmas with Gravity Duals

    Full text link
    We study the properties of the Polyakov loop in strongly-coupled gauge plasmas that are conjectured to be dual to five dimensional theories of gravity coupled to a nontrivial single scalar field. We find a gravity dual that can describe the thermodynamic properties and also the expectation value of the Polyakov loop in the deconfined phase of quenched SU(3) QCD up to 3Tc3T_c.Comment: 7 pages, 2 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - oct. 2, 200

    Particle Ratios and the QCD Critical Temperature

    Full text link
    We show how the measured particle ratios at RHIC can be used to provide non-trivial information about the critical temperature of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are used to describe hadronic yields. Hagedorn states are relevant close to TcT_c and have been shown to decrease η/s\eta/s to the KSS limit and allow for quick chemical equilibrium times in dynamical calculations of hadrons. The inclusion of Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, THT_H, which is assumed to be equal to TcT_c, and leads to an overall improvement of thermal fits. We find that for Au+Au collisions at RHIC at sNN=200\sqrt{s_{NN}}=200 GeV the best square fit measure, χ2\chi^2, occurs at Tc∼176T_c \sim 176 MeV and produces a chemical freeze-out temperature of 170.4 MeV and a baryon chemical potential of 27.8 MeV.Comment: 6 pages, 2 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - oct. 2, 200
    • …
    corecore