209 research outputs found

    Fandubbing

    Get PDF
    This chapter provides an overview of fandubbing, understood largely as a phenomenon encompassing a myriad of dubbing practices undertaken by amateur or non-expert users. The focus is placed on its origins, evolution and characteristics, and on the motivations of those involved in these underexplored fandom-related practices. This is achieved drawing on Baños’ research on this topic, on the few academic publications dealing with this phenomenon, and on non-academic sources providing useful insight into these practices and revealing the point of view of the creators of fandubs. The chapter also highlights the differences between fandubs and official dubbing, and identifies areas of future research

    Knockdown of Amyloid Precursor Protein in Zebrafish Causes Defects in Motor Axon Outgrowth

    Get PDF
    Amyloid precursor protein (APP) plays a pivotal role in Alzheimer’s disease (AD) pathogenesis, but its normal physiological functions are less clear. Combined deletion of the APP and APP-like protein 2 (APLP2) genes in mice results in post-natal lethality, suggesting that APP performs an essential, if redundant, function during embryogenesis. We previously showed that injection of antisense morpholino to reduce APP levels in zebrafish embryos caused convergent-extension defects. Here we report that a reduction in APP levels causes defective axonal outgrowth of facial branchiomotor and spinal motor neurons, which involves disorganized axonal cytoskeletal elements. The defective outgrowth is caused in a cell-autonomous manner and both extracellular and intracellular domains of human APP are required to rescue the defective phenotype. Interestingly, wild-type human APP rescues the defective phenotype but APPswe mutation, which causes familial AD, does not. Our results show that the zebrafish model provides a powerful system to delineate APP functions in vivo and to study the biological effects of APP mutations

    Transgenic Zebrafish Recapitulating tbx16 Gene Early Developmental Expression

    Get PDF
    We describe the creation of a transgenic zebrafish expressing GFP driven by a 7.5 kb promoter region of the tbx16 gene. This promoter segment is sufficient to recapitulate early embryonic expression of endogenous tbx16 in the presomitic mesoderm, the polster and, subsequently, in the hatching gland. Expression of GFP in the transgenic lines later in development diverges to some extent from endogenous tbx16 expression with the serendipitous result that one line expresses GFP specifically in commissural primary ascending (CoPA) interneurons of the developing spinal cord. Using this line we demonstrate that the gene mafba (valentino) is expressed in CoPA interneurons

    Cell Lineage and Regional Identity of Cultured Spinal Cord Neural Stem Cells and Comparison to Brain-Derived Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) can be isolated from different regions of the central nervous system. There has been controversy whether regional differences amongst stem and progenitor cells are cell intrinsic and whether these differences are maintained during expansion in culture. The identification of inherent regional differences has important implications for the use of these cells in neural repair. Here, we compared NSCs derived from the spinal cord and embryonic cortex. We found that while cultured cortical and spinal cord derived NSCs respond similarly to mitogens and are equally neuronogenic, they retain and maintain through multiple passages gene expression patterns indicative of the region from which they were isolated (e.g Emx2 and HoxD10). Further microarray analysis identified 229 genes that were differentially expressed between cortical and spinal cord derived neurospheres, including many Hox genes, Nuclear receptors, Irx3, Pace4, Lhx2, Emx2 and Ntrk2. NSCs in the cortex express LeX. However, in the embryonic spinal cord there are two lineally related populations of NSCs: one that expresses LeX and one that does not. The LeX negative population contains few markers of regional identity but is able to generate LeX expressing NSCs that express markers of regional identity. LeX positive cells do not give rise to LeX-negative NSCs. These results demonstrate that while both embryonic cortical and spinal cord NSCs have similar self-renewal properties and multipotency, they retain aspects of regional identity, even when passaged long-term in vitro. Furthermore, there is a population of a LeX negative NSC that is present in neurospheres derived from the embryonic spinal cord but not the cortex

    Ventrolateral Origin of Each Cycle of Rhythmic Activity Generated by the Spinal Cord of the Chick Embryo

    Get PDF
    BACKGROUND: The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. METHODOLOGY/PRINCIPAL FINDINGS: The spatiotemporal organization of neural activity in transverse slices of the lumbosacral cord of the chick embryo (E8-E11) was investigated using intrinsic and voltage-sensitive dye (VSD) imaging. VSD signals accompanying episodes of activity comprised a rhythmic decrease in light transmission that corresponded to each cycle of electrical activity recorded from the ipsilateral ventral root. The rhythmic signals were widely synchronized across the cord face, and the largest signal amplitude was in the ventrolateral region where motoneurons are located. In unstained slices we recorded two classes of intrinsic signal. In the first, an episode of rhythmic activity was accompanied by a slow decrease in light transmission that peaked in the dorsal horn and decayed dorsoventrally. Superimposed on this signal was a much smaller rhythmic increase in transmission that was coincident with each cycle of discharge and whose amplitude and spatial distribution was similar to that of the VSD signals. At the onset of a spontaneously occurring episode and each subsequent cycle, both the intrinsic and VSD signals originated within the lateral motor column and spread medially and then dorsally. By contrast, following a dorsal root stimulus, the optical signals originated within the dorsal horn and traveled ventrally to reach the lateral motor column. CONCLUSIONS/SIGNIFICANCE: These findings suggest that motoneuron activity contributes to the initiation of each cycle of rhythmic activity, and that motoneuron and/or R-interneuron synapses are a plausible site for the activity-dependent synaptic depression that modeling studies have identified as a critical mechanism for cycling within an episode

    Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury

    Get PDF
    Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies

    Lhx2 Is Required for Patterning and Expansion of a Distinct Progenitor Cell Population Committed to Eye Development

    Get PDF
    Progenitor cells committed to eye development become specified in the prospective forebrain and develop subsequently into the optic vesicle and the optic cup. The optic vesicle induces formation of the lens placode in surface ectoderm from which the lens develops. Numerous transcription factors are involved in this process, including the eye-field transcription factors. However, many of these transcription factors also regulate the patterning of the anterior neural plate and their specific role in eye development is difficult to discern since eye-committed progenitor cells are poorly defined. By using a specific part of the Lhx2 promoter to regulate Cre recombinase expression in transgenic mice we have been able to define a distinct progenitor cell population in the forebrain solely committed to eye development. Conditional inactivation of Lhx2 in these progenitor cells causes an arrest in eye development at the stage when the optic vesicle induces lens placode formation in the surface ectoderm. The eye-committed progenitor cell population is present in the Lhx2−/− embryonic forebrain suggesting that commitment to eye development is Lhx2-independent. However, re-expression of Lhx2 in Lhx2−/− progenitor cells only promotes development of retinal pigment epithelium cells, indicating that Lhx2 promotes the acquisition of the oligopotent fate of these progenitor cells. This approach also allowed us to identify genes that distinguish Lhx2 function in eye development from that in the forebrain. Thus, we have defined a distinct progenitor cell population in the forebrain committed to eye development and identified genes linked to Lhx2's function in the expansion and patterning of these progenitor cells
    corecore