1,077 research outputs found

    Comparing hierarchies of total functionals

    Full text link
    In this paper we consider two hierarchies of hereditarily total and continuous functionals over the reals based on one extensional and one intensional representation of real numbers, and we discuss under which asumptions these hierarchies coincide. This coincidense problem is equivalent to a statement about the topology of the Kleene-Kreisel continuous functionals. As a tool of independent interest, we show that the Kleene-Kreisel functionals may be embedded into both these hierarchies.Comment: 28 page

    Control of Retinal Sensitivity : I. Light and Dark Adaptation of Vertebrate Rods and Cones

    Get PDF
    Rods and cones in Necturus respond with graded hyperpolarization to test flashes spanning about 3.5 log units of intensity. Steady background levels hyperpolarize the rods, and the rod responses become progressively smaller as background level is increased. In cones, higher background levels reduce the effectiveness of test flashes, so higher ranges of test intensities are required to elicit the full range of graded responses. When backgrounds are terminated, cones return rapidly, but rods return slowly to the dark potential level. The effects of backgrounds on both rods and cones can be observed at intensities that cause negligible bleaching as determined by retinal densitometry. During dark adaptation, changes are observed in the rods and cones that are similar to those produced by backgrounds. Receptor sensitivities, derived from these results, show that rods saturate, cones obey Weber's law, and sensitization during dark adaptation follows a two-phase time-course

    'Datafication': Making sense of (big) data in a complex world

    Get PDF
    This is a pre-print of an article published in European Journal of Information Systems. The definitive publisher-authenticated version is available at the link below. Copyright @ 2013 Operational Research Society Ltd.No abstract available (Editorial

    Gain control in molecular information processing: Lessons from neuroscience

    Full text link
    Statistical properties of environments experienced by biological signaling systems in the real world change, which necessitate adaptive responses to achieve high fidelity information transmission. One form of such adaptive response is gain control. Here we argue that a certain simple mechanism of gain control, understood well in the context of systems neuroscience, also works for molecular signaling. The mechanism allows to transmit more than one bit (on or off) of information about the signal independently of the signal variance. It does not require additional molecular circuitry beyond that already present in many molecular systems, and, in particular, it does not depend on existence of feedback loops. The mechanism provides a potential explanation for abundance of ultrasensitive response curves in biological regulatory networks.Comment: 10 pages, 5 figure
    corecore