148 research outputs found

    Visual Neuroprosthetics: Functional Vision for the Blind

    Get PDF
    Journal ArticleResent progress in materials and microfabrication technologies have allowed researchers to reconsider the prospect of providing a useful visual sense to the profoundly blind. This will be accomplished by electrically stimulating their visual systems via an array of implanted microelectrodes. The techniques of the semiconductor industry have been employed to create electrode arrays with three dimensional architectures. These arrays are proving to be safely implantible into the visual parts of the brain of animals with little significant long term consequences. Thus, the tools of neuroprosthetics have been developed to the point that they will soon be used to validate some of the physiological foundations upon which artificial vision have been based. Validation of these foundations will accelerate the rapid pace of this research. If these physiological underpinnings can be shown to be solid, a demonstration of functionally useful vision in blind human volunteers may be possible within a five year time frame

    Silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array

    Get PDF
    Journal ArticleA method has been developed for the manufacture of a "three-dimensional" electrode array geometry for chronic intracortical stimulation. This silicon based array consists of a 4.2 x 4.2 x 0.12 mm thick monocrystalline substrate, from which project 100 conductive, silicon needles sharpened to facilitate cortical penetration. Each needle is electrically isolated from the other needles, and is about 0.09 mm thick at its base and 1.5 mm long. The sharpened end of each needle is coated with platinum to facilitate charge transfer into neural tissue. The following manufacturing processes were used to create this array. 1) Thermomigration of 100 aluminum pads through an n-type silicon block. This creates trails of highly conductive p+ silicon isolated from each other by opposing pn junctions. 2) A combination of mechanical and chemical micromachining which creates individual penetrating needles of the p+ silicon trails. 3) Metal deposition to create active electrode areas and electrical contact pads. 4) Array encapsulation with polyimide. The geometrical, mechanical, and electrical properties of these arrays should make them well suited as interfaces to cortical tissue

    Advanced demultiplexing system for physiological stimulation

    Get PDF
    Journal ArticleA CMOS very large scale integration (VLSI) chip has been designed and built to implement a scheme developed for multiplexing/demultiplexing the signals required to operate an intracortical stimulating electrode array. Because the use of radio telemetry in a proposed system utilizing this chip may impose limits upon the rate of data transmission to the chip, the scheme described herein was used to reduce the amount of digital information which must be sent to control a large quantity (up to several hundred) of stimulating electrodes. By incorporating multiple current sources on chip, many channels may be stimulated simultaneously. By incorporating on-chip timers, control over pulse timing is assigned to the chip, reducing by up to fourfold the amount of control data which must be sent. By incorporating on-chip RAM, information associated with the desired stimulus amplitude and pulse timing can be stored on chip. In this manner, it is necessary to send control information to the chip only when the information changes, rather than at the stimulus repeat rate for each channel. This further reduces the data rate by a factor of five to ten times or more. The architecture described here, implemented as an eight-channel stimulator, is scalable to a 625-channel stimulator while keeping data transmission rates under 2 Mbps

    Selective motor unit recruitment via intrafascicular multielectrode stimulation

    Get PDF
    Journal ArticleRecruitment of force via independent asynchronous firing of large numbers of motor units produces the grace and endurance of physiological motion. We have investigated the possibility of reproducing this physiological recruitment strategy by determining the selectivity of access to large numbers of independent motor units through intrafascicular multielectrode stimulation (IFMS) of the peripheral nerve. A Utah Slanted Electrode Array containing 100, 0.5-1.5 mm-long penetrating electrodes was inserted into the sciatic nerve of a cat, and forces generated by the 3 heads of triceps surea in response to electrical stimulation of the nerve were monitored via force transducers attached to their tendons. We found a mean of 17.4 +/- 4.9 (mean +/- SEM) electrodes selectively excited maximal forces in medial gastrocnemius before exciting another muscle. Among electrodes demonstrating selectivity at threshold, a mean of 7.3 +/- 2.7 electrodes were shown to recruit independent populations of motor units innervating medial gastrocnemius (overlap < 20%). Corresponding numbers of electrodes were reported for lateral gastrocnemius and soleus, as well. We used these stimulation data to emulate physiological recruitment strategies, and found that independent motor unit pool recruitment approximates physiological activation more closely than does intensity-based recruitment or frequency-based recruitment

    100 electrode intracortical array: structural variability

    Get PDF
    Journal ArticleA technique has been developed for fabricating three dimensional "hair brush" electrode arrays from monocrystalline silicon blocks. Arrays consist of a square pattern of 100 penetrating electrodes, with 400 microns interelectrode spacing. Each electrode is 1.5mm in length and tapers from about 100 microns at its base to a sharp point at the tip. The tips of each electrode are coated with platinum and the entire structure, with the exception of the tips, is insulated with polyimide. Electrical connection to selected electrodes is made by wire bonding polyimide insulated 25 microns diameter gold lead wires to bonding pads on the rear surface of the array. As the geometrical characteristics of the electrodes in such an aray will influence their electrical properties (such as impedance, capacitance, spreading resistance in an electrolyte, etc.) it is desirable that such an array have minimal variability in geometry from electrode to electrode. A study was performed to determine the geometrical variability resulting from our micromachining techniques. Measurements of the diameter of each of the 100 electrodes were made at various planes above the silicon substrate of the array. For the array that was measured, the standard deviation of the diameters was approximately 9% of the mean diameter near the tip, 8% near the middle, and 6% near the base. We describe fabrication techniques which should further reduce these variabilities

    Encoding mechanisms for sensory neurons studied with a multielectrode array in the cat dorsal root ganglion

    Get PDF
    Journal ArticleRecent advances in microelectrode array technology now permit a direct examination of the way populations of sensory neurons encode information about a limb's position in space. To address this issue, we recorded nerve impulses from about 100 single units simultaneously in the L6 and L7 dorsal root ganglia (DRG) of the anesthetized cat. Movement sensors, placed near the hip, knee, ankle, and foot, recorded passive movements of the cat's limb while it was moved pseudo-randomly. The firing rate of the neurons was correlated with the position of the limb in various coordinate systems. The firing rates were less correlated to the position of the foot in Cartesian coordinates (x, y) than in joint angular coordinates (hip, knee, ankle), or in polar coordinates. A model was developed in which position and its derivatives are encoded linearly, followed by a nonlinear spike-generating process. Adding the nonlinear portion significantly increased the correlations in all coordinate systems, and the full models were able to accurately predict the firing rates of various types of sensory neurons. The observed residual variability is captured by a simple stochastic model. Our results suggest that compact encoding models for primary afferents recorded at the DRG are well represented in polar coordinates, as has previously been suggested for the cortical and spinal representation of movement. This study illustrates how sensory receptors encode a sense of limb position, and it provides a general framework for modeling sensory encoding by populations of neurons

    Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion

    Get PDF
    Journal ArticleMuscle, cutaneous and joint afferents continuously signal information about the position and movement of individual joints. How does the nervous system extract more global information, for example about the position of the foot in space? To study this question we used microelectrode arrays to record impulses simultaneously from up to 100 discriminable nerve cells in the L6 and L7 dorsal root ganglia (DRG) of the anaesthetized cat. When the hindlimb was displaced passively with a random trajectory, the firing rate of the neurones could be predicted from a linear sum of positions and velocities in Cartesian (x, y), polar or joint angular coordinates. The process could also be reversed to predict the kinematics of the limb from the firing rates of the neurones with an accuracy of 1-2 cm. Predictions of position and velocity could be combined to give an improved fit to limb position. Decoders trained using random movements successfully predicted cyclic movements and movements in which the limb was displaced from a central point to various positions in the periphery. A small number of highly informative neurones (6-8) could account for over 80% of the variance in position and a similar result was obtained in a realistic limb model. In conclusion, this work illustrates how populations of sensory receptors may encode a sense of limb position and how the firing of even a small number of neurones can be used to decode the position of the limb in space

    Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve

    Get PDF
    Journal ArticleWe studied the consequences of long-term implantation of a penetrating microelectrode array in peripheral nerve over the time course of 4-6 mo. Electrode arrays without lead wires were implanted to test the ability of different containment systems to protect the array and nerve during contractions of surrounding muscles. Treadmill walking was monitored and the animals showed no functional deficits as a result of implantation. In a different set of experiments, electrodes with lead wires were implanted for up to 7 mo and the animals were tested at 2-4 week intervals at which time stimulation thresholds and recorded sensory activity were monitored for every electrode. It was shown that surgical technique highly affected the long-term stimulation results. Results between measurement sessions were compared, and in the best case, the stimulation properties stabilized in 80% of the electrodes over the course of the experiment (162 days). The recorded sensory signals, however, were not stable over time. A histological analysis performed on all implanted tissues indicated that the morphology and fiber density of the nerve around the electrodes were normal
    • …
    corecore