12,232 research outputs found

    Quasiparticle mirages in the tunneling spectra of d-wave superconductors

    Full text link
    We illustrate the importance of many-body effects in the Fourier transformed local density of states (FT-LDOS) of d-wave superconductors from a model of electrons coupled to an Einstein mode with energy Omega_0. For bias energies significantly larger than Omega_0 the quasiparticles have short lifetimes due to this coupling, and the FT-LDOS is featureless if the electron-impurity scattering is treated within the Born approximation. In this regime it is important to include boson exchange for the electron-impurity scattering which provides a `step down' in energy for the electrons and allows for long lifetimes. This many-body effect produces qualitatively different results, namely the presence of peaks in the FT-LDOS which are mirrors of the quasiparticle interference peaks which occur at bias energies smaller than ~ Omega_0. The experimental observation of these quasiparticle mirages would be an important step forward in elucidating the role of many-body effects in FT-LDOS measurements.Comment: revised text with new figures, to be published, Phys Rev

    Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice

    Full text link
    We study the deconfined quantum critical point of the Kondo-Heisenberg lattice in three dimensions using a fermionic representation for the localized spins. The mean-field phase diagram exhibits a zero temperature quantum critical point separating a spin liquid phase where the hybridization vanishes and a Kondo phase where it does not. Two solutions can be stabilized in the Kondo phase, namely a uniform hybridization when the band masses of the conduction electrons and the spinons have the same sign, and a modulated one when they have opposite sign. For the uniform case, we show that above a very small temperature scale, the critical fluctuations associated with the vanishing hybridization have dynamical exponent z=3, giving rise to a resistivity that has a T log T behavior. We also find that the specific heat coefficient diverges logarithmically in temperature, as observed in a number of heavy fermion metals.Comment: new Figure 2, new results on spin susceptibility, some minor changes to tex

    Multi-scale fluctuations near a Kondo Breakdown Quantum Critical Point

    Full text link
    We study the Kondo-Heisenberg model using a fermionic representation for the localized spins. The mean-field phase diagram exhibits a zero temperature quantum critical point separating a spin liquid phase where the f-conduction hybridization vanishes, and a Kondo phase where it does not. Two solutions can be stabilized in the Kondo phase, namely a uniform hybridization when the band masses of the conduction electrons and the f spinons have the same sign, and a modulated one when they have opposite sign. For the uniform case, we show that above a very small Fermi liquid temperature scale (~1 mK), the critical fluctuations associated with the vanishing hybridization have dynamical exponent z=3, giving rise to a specific heat coefficient that diverges logarithmically in temperature, as well as a conduction electron inverse lifetime that has a T log T behavior. Because the f spinons do not carry current, but act as an effective bath for the relaxation of the current carried by the conduction electrons, the latter result also gives rise to a T log T behavior in the resistivity. This behavior is consistent with observations in a number of heavy fermion metals.Comment: 17 pages, 10 figure

    Odd Parity and Line Nodes in Heavy Fermion Superconductors

    Full text link
    Group theory arguments have demonstrated that a general odd parity order parameter cannot have line nodes in the presence of spin-orbit coupling. In this paper, it is shown that these arguments do not hold on the kz=Ï€/ck_z = \pi/c zone face of a hexagonal close packed lattice. In particular, three of the six odd parity representations vanish identically on this face. This has potential relevance to the heavy fermion superconductor UPt3UPt_3.Comment: 5 pages, revte

    Transport implications of Fermi arcs in the pseudogap phase of the cuprates

    Full text link
    We derive the fermionic contribution to the longitudinal and Hall conductivities within a Kubo formalism, using a phenomenological Greens function which has been previously developed to describe photoemission data in the pseudogap phase of the cuprates. We find that the in-plane electrical and thermal conductivities are metallic-like, showing a universal limit behavior characteristic of a d-wave spectrum as the scattering rate goes to zero. In contrast, the c-axis resistivity and the Hall number are insulating-like, being divergent in the same limit. The relation of these results to transport data in the pseudogap phase is discussed.Comment: 3 pages, 2 figure

    Novel results in STM, ARPES, HREELS, Nernst, neutron, Raman, and isotope substitution experiments and their relation to bosonic modes and charge inhomogeneity, from perspective of negative-Ueff boson-fermion modelling of HTSC

    Full text link
    This paper seeks to synthesize much recent work on the HTSC materials around the latest STM results from Davis and coworkers. The conductance diffuse scattering results in particular are used as point of entry to discuss bosonic modes, both of condensed and uncondensed form. The bosonic mode picture is essential to understanding an ever growing range of observations within the HTSC field. The work is expounded within the context of the negative-U, boson-fermion modelling long advocated by the author. This general approach is presently seeing much theoretical development, into which I have looked to couple many of the experimental advances. While the formal theory is not yet sufficiently detailed to cover adequately all the experimental complexities presented by the real cuprate systems, it is clear that it affords very appreciable support to the line taken. An attempt is made throughout to say why and how it is that these events are tied so very closely to this particular set of materials.Comment: 36 pages pdf with 3 figures and 1 table included, Submitted to J. Phys. Cond. Mat

    Spin-memory loss at Co/Ru interfaces

    Full text link
    We have determined the spin-memory-loss parameter, δCo/Ru\delta_{Co/Ru}, by measuring the transmission of spin-triplet and spin-singlet Cooper pairs across Co/Ru interfaces in Josephson junctions and by Current-Perpendicular-to-Plane Giant Magnetoresistance (CPP-GMR) techniques. The probability of spin-memory loss at the Co/Ru interface is (1−exp(−δCo/Ru))(1-exp(-\delta_{Co/Ru})). From the CPP-MR, we obtain δCo/Ru=0.34−0.02+0.04\delta_{Co/Ru} = 0.34^{+0.04}_{-0.02} that is in good agreement with δCo/Ru=0.35±0.08\delta_{Co/Ru} = 0.35 \pm 0.08 obtained from spin-triplet transmission. For spin-singlet transmission, we have δCo/Ru=0.64±0.05\delta_{Co/Ru} = 0.64 \pm 0.05 that is different from that obtained from CPP-GMR and spin-triplet transmission. The source of this difference is not understood.Comment: 9 pages, 9 figure

    Differential coupling of G protein alpha subunits to seven-helix receptors expressed in Xenopus oocytes

    Get PDF
    Xenopus oocytes were used to examine the coupling of the serotonin 1c (5HT1c) and thyrotropin-releasing hormone (TRH) receptors to both endogenous and heterologously expressed G protein alpha subunits. Expression of either G protein-coupled receptor resulted in agonist- induced, Ca(2+)-activated Cl- currents that were measured using a two- electrode voltage clamp. 5HT-induced Cl- currents were reduced 80% by incubating the injected oocytes with pertussis toxin (PTX) and inhibited 50-65% by injection of antisense oligonucleotides to the PTX- sensitive Go alpha subunit. TRH-induced Cl- currents were reduced only 20% by PTX treatment but were inhibited 60% by injection of antisense oligonucleotides to the PTX-insensitive Gq alpha subunit. Injection of antisense oligonucleotides to a novel Xenopus phospholipase C-beta inhibited the 5HT1c (and Go)-induced Cl- current with little effect on the TRH (and Gq)-induced current. These results suggest that receptor- activated Go and Gq interact with different effectors, most likely different isoforms of phospholipase C-beta. Co-expression of each receptor with seven different mammalian G protein alpha subunit cRNAs (Goa, Gob, Gq, G11, Gs, Golf, and Gt) was also examined. Co-expression of either receptor with the first four of these G alpha subunits resulted in a maximum 4-6-fold increase in Cl- currents; the increase depended on the amount of G alpha subunit cRNA injected. This increase was blocked by PTX for G alpha oa and G alpha ob co-expression but not for G alpha q or G alpha 11 co-expression. Co-expression of either receptor with Gs, Golf, or Gt had no effect on Ca(2+)-activated Cl- currents; furthermore, co-expression with Gs or Golf also failed to reveal 5HT- or TRH-induced changes in adenylyl cyclase as assessed by activation of the cystic fibrosis transmembrane conductance regulator Cl- channel. These results indicate that in oocytes, the 5HT1c and TRH receptors do the following: 1) preferentially couple to PTX-sensitive (Go) and PTX-insensitive (Gq) G proteins and that these G proteins act on different effectors, 2) couple within the same cell type to several different heterologously expressed G protein alpha subunits to activate the oocyte's endogenous Cl- current, and 3) fail to couple to G protein alpha subunits that activate cAMP or phosphodiesterase
    • …
    corecore