243 research outputs found
Alarm Pheromone Composition and Behavioral Activity in Fungus-Growing Ants.
Chemical communication is a dominant method of communication throughout the animal kingdom and can be especially important in group-living animals in which communicating threats, either from predation or other dangers, can have large impacts on group survival. Social insects, in particular, have evolved a number of pheromonal compounds specifically to signal alarm. There is predicted to be little selection for interspecific variation in alarm cues because individuals may benefit from recognizing interspecific as well as conspecific cues and, consequently, alarm cues are not normally thought to be used for species or nestmate recognition. Here, we examine the composition of the alarm pheromones of seven species of fungus-growing ants (Attini), including both basal and derived species and examine the behavioral responses to alarm pheromone of Acromyrmex leaf-cutting ants, the sister genus to the highly studied Atta leaf-cutting ants. We find surprisingly high interspecific variation in alarm pheromone composition across the attine phylogeny. Interestingly, the active component of the alarm pheromone was different between the two leaf-cutting ant genera. Furthermore, in contrast to previous studies on Atta, we found no differences among morphological castes in their responses to alarm pheromone in Acromyrmex but we did find differences in responses among putative age classes. The results suggest that the evolution of alarm communication and signaling within social insect clades can be unexpectedly complex and that further work is warranted to understand whether the evolution of different alarm pheromone compounds is adaptive
The role of juvenile hormone in regulating reproductive physiology and dominance in Dinoponera quadriceps ants
Unequal reproductive output among members of the same sex (reproductive skew) is a common phenomenon in a wide range of communally breeding animals. In such species, reproductive dominance is often acquired during antagonistic interactions between group members that establish a reproductive hierarchy in which only a few individuals reproduce. Rank-specific syndromes of behavioural and physiological traits characterize such hierarchies, but how antagonistic behavioural interactions translate into stable rank-specific syndromes remains poorly understood. The pleiotropic nature of hormones makes them prime candidates for generating such syndromes as they physiologically integrate environmental (social) information, and often affect reproduction and behaviour simultaneously. Juvenile hormone (JH) is one of several hormones that occupy such a central regulatory role in insects and has been suggested to regulate reproductive hierarchies in a wide range of social insects including ants. Here we use experimental manipulation to investigate the effect of JH levels on reproductive physiology and social dominance in high-ranked workers of the eusocial ant Dinoponera quadriceps, a species that has secondarily reverted to queenless, simple societies. We show that JH regulated reproductive physiology, with ants in which JH levels were experimentally elevated having more regressed ovaries. In contrast, we found no evidence of JH levels affecting dominance in social interactions. This could indicate that JH and ovary development are decoupled from dominance in this species, however only high-ranked workers were investigated. The results therefore confirm that the regulatory role of JH in reproductive physiology in this ant species is in keeping with its highly eusocial ancestors rather than its secondary reversion to simple societies, but more investigation is needed to disentangle the relationships between hormones, behaviour and hierarchies
Factors Underlying the Early Limb Muscle Weakness in Acute Quadriplegic Myopathy Using an Experimental ICU Porcine Model
The basic mechanisms underlying acquired generalized muscle weakness and paralysis in critically ill patients remain poorly understood and may be related to prolonged mechanical ventilation/immobilization (MV) or to other triggering factors such as sepsis, systemic corticosteroid (CS) treatment and administration of neuromuscular blocking agents (NMBA). The present study aims at exploring the relative importance of these factors by using a unique porcine model. Piglets were all exposed to MV together with different combinations of endotoxin-induced sepsis, CS and NMBA for five days. Peroneal motor nerve conduction velocity and amplitude of the compound muscle action potential (CMAP) as well as biceps femoris muscle biopsy specimens were obtained immediately after anesthesia on the first day and at the end of the 5-day experimental period. Results showed that peroneal nerve motor conduction velocity is unaffected whereas the size of the CMAP decreases independently of the type of intervention, in all groups after 5 days. Otherwise, despite a preserved size, muscle fibre specific force (maximum force normalized to cross-sectional area) decreased dramatically for animals exposed to MV in combination with CS or/and sepsis. These results suggest that the rapid declines in CMAP amplitude and in force generation capacity are triggered by independent mechanisms with significant clinical and therapeutic implications
Diaphragm Muscle Weakness in an Experimental Porcine Intensive Care Unit Model
In critically ill patients, mechanisms underlying diaphragm muscle remodeling and resultant dysfunction contributing to weaning failure remain unclear. Ventilator-induced modifications as well as sepsis and administration of pharmacological agents such as corticosteroids and neuromuscular blocking agents may be involved. Thus, the objective of the present study was to examine how sepsis, systemic corticosteroid treatment (CS) and neuromuscular blocking agent administration (NMBA) aggravate ventilator-related diaphragm cell and molecular dysfunction in the intensive care unit. Piglets were exposed to different combinations of mechanical ventilation and sedation, endotoxin-induced sepsis, CS and NMBA for five days and compared with sham-operated control animals. On day 5, diaphragm muscle fibre structure (myosin heavy chain isoform proportion, cross-sectional area and contractile protein content) did not differ from controls in any of the mechanically ventilated animals. However, a decrease in single fibre maximal force normalized to cross-sectional area (specific force) was observed in all experimental piglets. Therefore, exposure to mechanical ventilation and sedation for five days has a key negative impact on diaphragm contractile function despite a preservation of muscle structure. Post-translational modifications of contractile proteins are forwarded as one probable underlying mechanism. Unexpectedly, sepsis, CS or NMBA have no significant additive effects, suggesting that mechanical ventilation and sedation are the triggering factors leading to diaphragm weakness in the intensive care unit
A computational model of lipopolysaccharide-induced nuclear factor kappa B activation:a key signalling pathway in infection-induced preterm labour
Preterm birth is the single biggest cause of significant neonatal morbidity and mortality, and the incidence is rising. Development of new therapies to treat and prevent preterm labour is seriously hampered by incomplete understanding of the molecular mechanisms that initiate labour at term and preterm. Computational modelling provides a new opportunity to improve this understanding. It is a useful tool in (i) identifying gaps in knowledge and informing future research, and (ii) providing the basis for an in silico model of parturition in which novel drugs to prevent or treat preterm labour can be "tested". Despite their merits, computational models are rarely used to study the molecular events initiating labour. Here, we present the first attempt to generate a dynamic kinetic model that has relevance to the molecular mechanisms of preterm labour. Using published data, we model an important candidate signalling pathway in infection-induced preterm labour: that of lipopolysaccharide (LPS) -induced activation of Nuclear Factor kappa B. This is the first model of this pathway to explicitly include molecular interactions upstream of Nuclear Factor kappa B activation. We produced a formalised graphical depiction of the pathway and built a kinetic model based on ordinary differential equations. The kinetic model accurately reproduced published in vitro time course plots of Lipopolysaccharide-induced Nuclear Factor kappa B activation in mouse embryo fibroblasts. In this preliminary work we have provided proof of concept that it is possible to build computational models of signalling pathways that are relevant to the regulation of labour, and suggest that models that are validated with wet-lab experiments have the potential to greatly benefit the field
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
Tyrosine Sulfation of Native Mouse Psgl-1 Is Required for Optimal Leukocyte Rolling on P-Selectin In Vivo
We recently demonstrated that tyrosine sulfation is an important contributor to monocyte recruitment and retention in a mouse model of atherosclerosis. P-selectin glycoprotein ligand-1 (Psgl-1) is tyrosine-sulfated in mouse monocyte/macrophages and its interaction with P-selectin is important in monocyte recruitment in atherosclerosis. However, whether tyrosine sulfation is required for the P-selectin binding function of mouse Psgl-1 is unknown. Here we test the function of native Psgl-1 expressed in leukocytes lacking endogenous tyrosylprotein sulfotransferase (TPST) activity.Psgl-1 function was assessed by examining P-selectin dependent leukocyte rolling in post-capillary venules of C57BL6 mice transplanted with hematopoietic progenitors from wild type (WT → B6) or Tpst1;Tpst2 double knockout mice (Tpst DKO → B6) which lack TPST activity. We observed that rolling flux fractions were lower and leukocyte rolling velocities were higher in Tpst DKO → B6 venules compared to WT → B6 venules. Similar results were observed on immobilized P-selectin in vitro. Finally, Tpst DKO leukocytes bound less P-selectin than wild type leukocytes despite equivalent surface expression of Psgl-1.These findings provide direct and convincing evidence that tyrosine sulfation is required for optimal function of mouse Psgl-1 in vivo and suggests that tyrosine sulfation of Psgl-1 contributes to the development of atherosclerosis
Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper
<p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p
Human ocular sparganosis in southern Brazil
We report the first case of human ocular sparganosis in the state of Santa Catarina, southern Brazil. A young female patient presented with three periocular moveable inflammatory masses in her right eye, during two years. By surgical excisional biopsy, a helminth larval stage was removed and identified as sparganum. Clinical, laboratory and epidemiological data on this parasite are presented
- …