36 research outputs found
Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study
AbstractAnalysis was carried out to determine the physicochemical characteristics – morphological and structural, electrokinetic properties, elemental composition and functional groups – of peat, with a view to its use as a potential adsorbent of heavy metal ions from aqueous solutions. A significant part of the study comprised tests of adsorption of nickel(II) and lead(II) ions from model solutions. It was determined how the parameters of the adsorption process (time, pH, quantity of sorbent) influence the effectiveness of removal of nickel(II) and lead(II) ions. The adsorption kinetics are also described, using a pseudo-first-order model and pseudo-second-order models of types 1–4. The results show strong correspondence to a pseudo-second-order kinetics model of type 1 (r2=0.999 for all initial concentrations). Another key part of the analysis was the use of the Langmuir and Freundlich models to determine the adsorption isotherms. The experimental data were in strong correspondence with Langmuir’s isotherm model. The sorption capacities of peat with respect to nickel(II) and lead(II) ions were 61.27mg(Ni2+)/g and 82.31mg(Pb2+)/g. Desorption tests confirmed the possibility of reusing peat as an effective sorbent of environmentally harmful metals. A mechanism is also proposed for the adsorption of Ni2+ and Pb2+ ions on adsorbent
Polymorphisms within autophagy-related genes as susceptibility biomarkers for multiple myeloma: a meta-analysis of three large cohorts and functional characterization
Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data.Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the
bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains,
resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a
dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development,
but also ensuring MM cell survival and promoting resistance to treatments. To date no studies
have determined the impact of genetic variation in autophagy-related genes on MM risk. We
performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and
6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms
(SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear
cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy
donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46,
IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14).
Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations
of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of
transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte
hemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP corre lated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+ IgD− cells, IgM− cells, IgD−IgM−
cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4
) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels
of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4
). These results suggest that genetic variants within
these six loci influence MM risk through the modulation of specific subsets of immune cells, as well
as vitamin D3−, MCP-2−, and IL20-dependent pathways.This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB).This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF)
Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p \u3c 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways
Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB). This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).Peer reviewe
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan
Do hearing threshold levels in workers of the furniture industry reflect their exposure to noise?
Background: The aim of the study was to analyze the hearing status of employees of a furniture factory with respect to their exposure to noise and the presence of additional risk factors of noise-induced hearing loss (NIHL). Material and Methods: Noise measurements, questionnaire survey and assessment of hearing, using pure tone audiometry, were carried out in 50 male workers, aged 20–57 years, directly employed in the manufacture of furniture. The actual workers’ hearing threshold levels (HTLs) were compared with the predictions calculated according to PN-ISO 1999:2000 based on age, gender and noise exposure. Results: Workers under study were exposed to noise at daily noise exposure levels of 82.7–94.8 dB (mean: 90.9 dB) for a period of 3–14 years. In all subjects, mean HTL at 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz did not exceed 25 dB. Nevertheless, high frequency notches were found in 11% of audiograms. The actual workers’ HTLs at 3000–6000 Hz were similar to those predicted using PN-ISO 1999:2000. There were statistical significant differences between HTLs in subgroups of people with higher (> 78 mm Hg) and lower (≤ 78 mm Hg) diastolic blood pressure, smokers and non-smokers, and those working with organic solvents. Hearing loss was more evident in subjects affected by the additional risk factors specified above. Conclusions: The results confirm the need to consider, in addition to noise, also some other NIHL risk factors, such as tobacco smoking, elevated blood pressure, and co-exposure to organic solvents when estimating the risk of NIHL and developing the hearing conservation programs for workers. Med Pr 2016;67(3):337–35
Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial
The biosynthesis, chemistry, structural features and functionality of spongin as a halogenated scleroprotein of keratosan demosponges are still paradigms. This review has the principal goal of providing thorough and comprehensive coverage of spongin as a naturally prefabricated 3D biomaterial with multifaceted applications. The history of spongin’s discovery and use in the form of commercial sponges, including their marine farming strategies, have been analyzed and are discussed here. Physicochemical and material properties of spongin-based scaffolds are also presented. The review also focuses on prospects and trends in applications of spongin for technology, materials science and biomedicine. Special attention is paid to applications in tissue engineering, adsorption of dyes and extreme biomimetics
Equilibrium, Kinetic, and Thermodynamic Studies on Adsorption of Rhodamine B from Aqueous Solutions Using Oxidized Mesoporous Carbons
Oxidized mesoporous carbon CSBA-15, obtained by the hard method, was applied to remove rhodamine B from the aqueous system. The process of carbon oxidation was performed using 0.5 and 5 M of nitric (V) acid solution at 70 and 100 °C. Functionalization of mesoporous carbon with HNO3 solutions led to reduction in the surface area, pore volume, and micropore area, however, it also led to an increased number of oxygen functional groups of acidic character. The functional groups probably are located at the entrance of micropores, in this way, reducing the values of textural parameters. Isotherms of rhodamine B adsorption indicate that the oxidation of mesoporous carbons resulted in an increase in the effectiveness of the removal of this dye from aqueous solutions. The influence of temperature, pH, and contact time of mesoporous material/rhodamine B on the effectiveness of dye removal was tested. The process of dye adsorption on the surfaces of the materials studied was established to be most effective at pH 12 and at 60 °C. Kinetic studies of the process of adsorption proved that the equilibrium state between the dye molecules and mesoporous carbon materials is reached after about 1 h. The adsorption kinetics were well fitted using a pseudo-second-order model. The most effective in rhodamine B removal was the sample CSBA-15-5-100, containing the greatest number of oxygen functional groups of acidic character. The Langmuir model best represented equilibrium data