11 research outputs found

    Flotation—A New Method to Circumvent PCR Inhibitors in the Diagnosis of Lawsonia intracellularis

    Get PDF
    The obligate intracellular bacterium Lawsonia intracellularis causes enteritis and poor growth in weaned pigs. Cultivation is difficult and diagnosis ante mortem is mainly based on techniques such as polymerase chain reaction. However, false negative results caused by the presence of PCR-inhibitory factors constitute a problem. This study aimed to develop and evaluate a new technique, flotation, to separate L. intracellularis from inhibitors in faeces prior to PCR. The technique was evaluated by comparison to two previously evaluated and commonly used methods, preparation by boiling lysate combined with nested PCR and preparation by a commercial kit combined with conventional PCR. Continuous density centrifugation of faecal samples containing L. intracellularis suggested the buoyant density of the microbe to be between 1.064 and 1.077 g/mL. Several flotation setups were tested to achieve optimal separation of the microbe from inhibitors and faecal particles. The finally selected setup floated whole L. intracellularis from the application site at the bottom to the upper part of the gradient while inhibitory components mainly remained in the bottom. PCR was performed directly on material recovered from the upper interphase. The method was evaluated on 116 clinical samples. As compared to sample preparation by boiling combined with nested PCR, fewer samples were inhibited but also fewer positives were identified. In comparison to preparation by a commercial kit combined with conventional PCR, presently used for routine diagnosis, similar results were obtained. However, the new method was comparably faster to perform. The new method, based on flotation of Lawsonia intracellularis combined with conventional PCR, was well suited for routine diagnosis

    Rapid Quantification of Yersinia enterocolitica in Pork Samples by a Novel Sample Preparation Method, Flotation, Prior to Real-Time PCR

    No full text
    The development of real-time PCR thermal cycles in the late 1990s has opened up the possibility of accurate quantification of microorganisms in clinical, environmental, and food samples. However, a lack of suitable sample preparation methods that allow rapid quantification of the nucleic acids, remove PCR inhibitors, and prevent false-positive results due to DNA originating from dead cells has limited the use of quantitative PCR. We have used for the first time a new variant of density gradient centrifugation, called flotation, as a user-friendly sample preparation method prior to PCR. This paper describes the use of this sample preparation method, without DNA purification, for direct detection and quantification of Yersinia enterocolitica in PCR-inhibitory meat juice from pork. Flotation combined with qPCR could overcome PCR interference in juice from pork, as was shown by amplification efficiencies of 1.006 ± 0.021 and 1.007 ± 0.025, which are comparable to the amplification efficiency obtained for purified DNA samples (1.005 ± 0.059). Applying flotation to meat juice samples containing natural background flora and spiked with different levels of Y. enterocolitica showed that direct quantification of Y. enterocolitica was possible down to a level of at least 4.2 × 10(3) CFU per ml of meat juice, even in the presence of 10(6) CFU of background flora per ml. Finally, the results showed that samples containing large amounts of Y. enterocolitica DNA did not result in a positive PCR signal. This indicates that the risk of false-positive results due to detection of DNA originating from dead cells can be greatly reduced by using flotation prior to PCR

    Quantification of Campylobacter spp. in Chicken Rinse Samples by Using Flotation prior to Real-Time PCR

    No full text
    Real-time PCR is fast, sensitive, specific, and can deliver quantitative data; however, two disadvantages are that this technology is sensitive to inhibition by food and that it does not distinguish between DNA originating from viable, viable nonculturable (VNC), and dead cells. For this reason, real-time PCR has been combined with a novel discontinuous buoyant density gradient method, called flotation, in order to allow detection of only viable and VNC cells of thermotolerant campylobacters in chicken rinse samples. Studying the buoyant densities of different Campylobacter spp. showed that densities changed at different time points during growth; however, all varied between 1.065 and 1.109 g/ml. These data were then used to develop a flotation assay. Results showed that after flotation and real-time PCR, cell concentrations as low as 8.6 × 10(2) CFU/ml could be detected without culture enrichment and amounts as low as 2.6 × 10(3) CFU/ml could be quantified. Furthermore, subjecting viable cells and dead cells to flotation showed that viable cells were recovered after flotation treatment but that dead cells and/or their DNA was not detected. Also, when samples containing VNC cells mixed with dead cells were treated with flotation after storage at 4 or 20°C for 21 days, a similar percentage resembling the VNC cell fraction was detected using real-time PCR and 5-cyano-2,3-ditolyl tetrazolium chloride-4â€Č,6â€Č-diamidino-2-phenylindole staining (20% ± 9% and 23% ± 4%, respectively, at 4°C; 11% ± 4% and 10% ± 2%, respectively, at 20°C). This indicated that viable and VNC Campylobacter cells could be positively selected and quantified using the flotation method

    Culture-independent qunatification of Salmonella enterica in carcass gauze swabs by flotation prior to real-time PCR

    No full text
    To facilitate quantitative risk assessment in the meat production chain, there is a need for culture-independent quantification methods. The aim of this study was to evaluate the use of flotation, a non-destructive sample preparation method based on traditional buoyant density centrifugation, for culture-independent quantification of intact Salmonella in pig carcass gauze swabs (100 cm(2)) prior to quantitative PCR (qPCR). A novel approach was investigated, excluding the homogenization step prior to flotation, to improve the detection limit and speed up the quantification procedure. The buoyant density of two Salmonella strains in different growth conditions was determined to be 1.065-1.092 g/ml. Based on these data, an optimal discontinuous flotation with three different density layers, similar to 1.200, 1.102 and 1.055 g/ml, was designed for extracting intact Salmonella cells from pig carcass swabs. The method allowed accurate quantification from 4.4 x 10(2) to at least 2.2 x 10(7) CFU Salmonella per swab sample using qPCR (without preceding DNA extraction) or selective plating on xylose lysine deoxycholate agar. Samples with 50 CFU could be detected occasionally but fell outside the linear range of the standard curve. The swab samples showed a broad biological diversity; for seven samples not inoculated with Salmonella, the microbial background flora (BGF) was determined to 5.0+/-2.2 log CFU/ml sample withdrawn after flotation. It was determined that the proceeding PCR step was inhibited by BGF concentrations of >= 6.1 x 10(8) CFU/swab sample, but not by concentrations <= 6.1 x 10(6) CFU/swab sample. By using the gauze swabs directly in the flotation procedure, the homogenization step normally used for preparation of food-related samples could be excluded, which simplified the culture-independent quantification method considerably. (C) 2010 Elsevier B.V. All rights reserved

    Flotation as a tool for indirect DNA extraction from soil

    No full text
    Nowadays, soil diversity is accessed at molecular level by the total DNA extraction of a given habitat. However, high DNA yields and purity are difficult to achieve due to the co-extraction of enzyme-inhibitory substances that inhibit downstream applications, such as PCR, restriction enzyme digestion, and DNA ligation. Therefore, there is a need for further development of sample preparation methods that efficiently can result in pure DNA with satisfactory yield. In this study, the buoyant densities of soil microorganisms were utilized to design a sample preparation protocol where microbial cells could be separated from the soil matrix and enzyme-inhibitory substances by flotation. A discontinuous density gradient was designed using a colloidal solution of non-toxic silanised silica particles (BactXtractor). The method proved to be an efficient alternative to direct extraction protocols where cell lysis is performed in the presence of soil particles. The environmental DNA extracted after flotation had high molecular weight and comparable yield as when using available commercial kits (3.5 mug DNA/g soil), and neither PCR nor restriction enzyme digestion of DNA were inhibited. Furthermore, specific primers enabled recovery of both prokaryotic and eukaryotic sequences
    corecore