33 research outputs found

    Detection of Thyroid Carcinoma Antigen with Quantum Dots and Monoclonal IgM Antibody (JT-95) System

    Get PDF
    High-intensity fluorescent nanoparticles, quantum dots (QDs), have been applied to a wide range of biological studies and medical studies by taking advantage of their fluorescent properties. On the other hand, we have reported the specificity of JT-95 monoclonal IgM antibody, which recognizes the antigen of thyroid carcinomas. Here we show that the combination of QDs and JT-95 monoclonal antibody was applicable to Western blotting analysis, ELISA-like system, and fluorescent microscopic analysis of SW1736 thyroid carcinoma cell line. We have opened up the possibility that antibodies for higher specific recognition, even IgM, are applicable to the detection system with QDs

    3D Structural Insights into β-Glucans and Their Binding Proteins

    No full text
    β(1,3)-glucans are a component of fungal and plant cell walls. The β-glucan of pathogens is recognized as a non-self-component in the host defense system. Long β-glucan chains are capable of forming a triple helix structure, and the tertiary structure may profoundly affect the interaction with β-glucan-binding proteins. Although the atomic details of β-glucan binding and signaling of cognate receptors remain mostly unclear, X-ray crystallography and NMR analyses have revealed some aspects of β-glucan structure and interaction. Here, we will review three-dimensional (3D) structural characteristics of β-glucans and the modes of interaction with β-glucan-binding proteins

    A Computational Study of the Mechanism of Succinimide Formation in the Asn–His Sequence: Intramolecular Catalysis by the His Side Chain

    No full text
    The rates of deamidation reactions of asparagine (Asn) residues which occur spontaneously and nonenzymatically in peptides and proteins via the succinimide intermediate are known to be strongly dependent on the nature of the following residue on the carboxyl side (Xxx). The formation of the succinimide intermediate is by far the fastest when Xxx is glycine (Gly), the smallest amino acid residue, while extremely slow when Xxx is bulky such as isoleucine (Ile) and valine (Val). In this respect, it is very interesting to note that the succinimide formation is definitely accelerated when Xxx is histidine (His) despite its large size. In this paper, we computationally show that, in an Asn–His sequence, the His side-chain imidazole group (in the neutral Nε-protonated form) can specifically catalyze the formation of the tetrahedral intermediate in the succinimide formation by mediating a proton transfer. The calculations were performed for Ace−Asn−His−Nme (Ace = acetyl, Nme = methylamino) as a model compound by the density functional theory with the B3LYP functional and the 6-31+G(d,p) basis set. We also show that the tetrahedral intermediate, once protonated at the NH2 group, easily releases an ammonia molecule to give the succinimide species

    Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain

    No full text
    The Asn-Gly-Arg (NGR) motif and its deamidation product isoAsp-Gly-Arg (isoDGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding isoDGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH2CO-NGRC]-NH2, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H2PO4− ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8) continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H2PO4− ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH2 group on the five-membered ring, was shown to easily undergo NH3 elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation

    Glycolic Acid-Catalyzed Deamidation of Asparagine Residues in Degrading PLGA Matrices: A Computational Study

    No full text
    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices

    Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    No full text
    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism

    Phosphate-Catalyzed Succinimide Formation from an NGR-Containing Cyclic Peptide: A Novel Mechanism for Deammoniation of the Tetrahedral Intermediate

    No full text
    Spontaneous deamidation in the Asn-Gly-Arg (NGR) motif that yields an isoAsp-Gly-Arg (isoDGR) sequence has recently attracted considerable attention because of the possibility of application to dual tumor targeting. It is well known that Asn deamidation reactions in peptide chains occur via the five-membered ring succinimide intermediate. Recently, we computationally showed by the B3LYP density functional theory method, that inorganic phosphate and the Arg side chain can catalyze the NGR deamidation using a cyclic peptide, c[CH2CO–NGRC]–NH2. In this previous study, the tetrahedral intermediate of the succinimide formation was assumed to be readily protonated at the nitrogen originating from the Asn side chain by the solvent water before the release of an NH3 molecule. In the present study, we found a new mechanism for the decomposition of the tetrahedral intermediate that does not require the protonation by an external proton source. The computational method is the same as in the previous study. In the new mechanism, the release of an NH3 molecule occurs after a proton exchange between the peptide and the phosphate and conformational changes. The rate-determining step of the overall reaction course is the previously reported first step, i.e., the cyclization to form the tetrahedral intermediate

    Acetic Acid-Catalyzed Formation of N-Phenylphthalimide from Phthalanilic Acid: A Computational Study of the Mechanism

    No full text
    In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes

    Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism

    No full text
    Aspartic acid (Asp) residues in proteins and peptides are prone to the non-enzymatic reactions that give biologically uncommon l-β-Asp, d-Asp, and d-β-Asp residues via the cyclic succinimide intermediate (aminosuccinyl residue, Suc). These abnormal Asp residues are known to have relevance to aging and pathologies. Despite being non-enzymatic, the Suc formation is thought to require a catalyst under physiological conditions. In this study, we computationally investigated the mechanism of the Suc formation from Asp residues that were catalyzed by the dihydrogen phosphate ion, H2PO4−. We used Ac–l-Asp–NHMe (Ac = acetyl, NHMe = methylamino) as a model compound. The H2PO4− ion (as a catalyst) and two explicit water molecules (as solvent molecules stabilizing the negative charge) were included in the calculations. All of the calculations were performed by density functional theory with the B3LYP functional. We revealed a phosphate-catalyzed two-step mechanism (cyclization–dehydration) of the Suc formation, where the first step is predicted to be rate-determining. In both steps, the reaction involved a proton relay mediated by the H2PO4− ion. The calculated activation barrier for this mechanism (100.3 kJ mol−1) is in reasonable agreement with an experimental activation energy (107 kJ mol−1) for the Suc formation from an Asp-containing peptide in a phosphate buffer, supporting the catalytic mechanism of the H2PO4− ion that is revealed in this study

    3D Structures of IgA, IgM, and Components

    No full text
    Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure–function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field
    corecore