43 research outputs found

    Fetal Fibroblast Transplantation via Ablative Fractional Laser Irradiation Reduces Scarring

    No full text
    Scar treatments include fractional laser treatment, cell transplantation, surgery, skin needling, and dermal fillers. Fractional laser treatments are used to reduce scarring and blurring. Cell transplantation is promising, with mature fibroblasts and adipose-derived stem cells being used clinically, while embryonic fibroblasts are used experimentally. Herein, we developed a combination of ablative CO2 (carbon dioxide) fractional laser and cell transplantation for the treatment of scars. Eight-week-old male C57Bl/6 mice were used to create a full-layer skin defect in the back skin and create scars. The scar was then irradiated using a CO2 fractional laser. The cells were then transplanted onto the scar surface and sealed with a film agent. The transplanted cells were GFP-positive murine fetal fibroblasts (FB), fetal fibroblasts with a long-term sphere-forming culture (LS), and fetal skin with a short-term sphere-forming culture (SS). After transplantation, green fluorescent protein (GFP)-positive cells were scattered in the dermal papillary layer and subcutis in all the groups. LS significantly reduced the degree of scarring, which was closest to normal skin. In conclusion, the combination of ablative fractional laser irradiation and fetal fibroblast transplantation allowed us to develop new methods for scar treatment

    Compound 13 Promotes Epidermal Healing in Mouse Fetuses via Activation of AMPK

    No full text
    Unlike adults, early developing fetuses can completely regenerate tissue, and replicating this could lead to the development of treatments to reduce scarring. Mice epidermal structures, including wound healing patterns, are regenerated until embryonic day (E) 13, leaving visible scars thereafter. These patterns require actin cable formation at the epithelial wound margin through AMP-activated protein kinase (AMPK) activation. We aimed to investigate whether the administration of compound 13 (C13), a recently discovered AMPK activator, to the wound could reproduce this actin remodeling and skin regeneration pattern through its AMPK activating effect. The C13 administration resulted in partial formations of actin cables, which would normally result in scarring, and scar reduction during the healing of full-layer skin defects that occurred in E14 and E15 fetuses. Furthermore, C13 was found to cause AMPK activation in these embryonic mouse epidermal cells. Along with AMPK activation, Rac1 signaling, which is involved in leaflet pseudopodia formation and cell migration, was suppressed in C13-treated wounds, indicating that C13 inhibits epidermal cell migration. This suggests that actin may be mobilized by C13 for cable formation. Administration of C13 to wounds may achieve wound healing similar to regenerative wound healing patterns and may be a potential candidate for new treatments to heal scars

    Fibroblast Growth Factor 7 Suppresses Fibrosis and Promotes Epithelialization during Wound Healing in Mouse Fetuses

    No full text
    Adult mammalian wounds leave visible scars, whereas skin wounds in developing mouse fetuses are scarless until a certain point in development when complete regeneration occurs, including the structure of the dermis and skin appendages. Analysis of the molecular mechanisms at this transition will provide clues for achieving scarless wound healing. The fibroblast growth factor (FGF) family is a key regulator of inflammation and fibrosis during wound healing. We aimed to determine the expression and role of FGF family members in fetal wound healing. ICR mouse fetuses were surgically wounded at embryonic day 13 (E13), E15, and E17. Expression of FGF family members and FGF receptor (FGFR) in tissue samples from these fetuses was evaluated using in situ hybridization and reverse transcription-quantitative polymerase chain reaction. Fgfr1 was downregulated in E15 and E17 wounds, and its ligand Fgf7 was upregulated in E13 and downregulated in E15 and E17. Recombinant FGF7 administration in E15 wounds suppressed fibrosis and promoted epithelialization at the wound site. Therefore, the expression level of Fgf7 may correlate with scar formation in late mouse embryos, and external administration of FGF7 may represent a therapeutic option to suppress fibrosis and reduce scarring

    Downregulation of Lhx2 Markedly Impairs Wound Healing in Mouse Fetus

    No full text
    Multiple transitions occur in the healing ability of the skin during embryonic development in mice. Embryos up to embryonic day 13 (E13) regenerate completely without a scar after full-thickness wounding. Then, up to E16, dermal structures can be formed, including skin appendages such as hair follicles. However, after E17, wound healing becomes incomplete, and scar formation is triggered. Lhx2 regulates the switch between maintenance and activation of hair follicle stem cells, which are involved in wound healing. Therefore, we investigated the role of Lhx2 in fetal wound healing. Embryos of ICR mice were surgically wounded at E13, E15, and E17, and the expression of Lhx2 along with mitotic (Ki67 and p63) and epidermal differentiation (keratin-10 and loricrin) markers was analyzed. The effect of Lhx2 knockdown on wound healing was observed. Lhx2 expression was not noticed in E13 due to the absence of folliculogenesis but was evident in the epidermal basal layer of E15 and E17 and at the base of E17 wounds, along with Ki67 and p63 expression. Furthermore, Lhx2 knockdown in E15 markedly prolonged wound healing and promoted clear scar formation. Therefore, Lhx2 expression is involved in cell division associated with wound healing and may contribute to scar formation in late embryos

    Additional Wide Resection of Infantile Dermatofibrosarcoma Protuberans after Unplanned Excision: A Case Report

    No full text
    Dermatofibrosarcoma protuberans (DFSP) is a locally aggressive intermediate soft tissue neoplasm that occurs in the dermis. DFSP generally occurs in young to middle-aged adults and rarely in infancy. Because of its extreme rarity, DFSP is difficult to diagnose and treat, especially when it occurs in infancy. In this paper, we reported a case of infantile DFSP in which we performed additional wide resection with a 3-cm horizontal margin for a mass that had previously undergone unplanned excision. No tumor recurrence has been seen for 3 years postoperatively. We suggest that the possibility of DFSP should always be considered when an enlarging superficial mass is identified on the trunk, even in an infant. Additionally, radical local treatment is as important for DFSP in infancy as it is for DFSP in adults, even after unplanned excision

    Correction of Diastasis Rectus Abdominis with Tacking the Rectus Sheath and Resection of Excess Skin for Cosmesis

    No full text
    Introduction. We report a case of diastasis rectus abdominis (DRA), in which the improvement of the appearance was obtained by performing extra skin resection. Case Report. A 30-year-old woman presented persistent abdominal bulging after her second delivery. She was diagnosed as DRA by computed tomography. We underwent a surgery that tacking the anterior layer of the rectus sheath and resecting excess skin. Results. There has been no clinical evidence of recurrence, and the patient satisfies her abdominal appearance. Conclusion. Because DRA is not a true hernia, surgery for DRA should be performed in understanding how patients want to improve their aesthetic appearance

    Mast Cells Are Activated in the Giant Earlobe Keloids: A Case Series

    No full text
    Mast cells and inflammatory cells are abundant in keloid and hypertrophic scar tissues. Even if the cause of physical injury is similar, such as piercing or scratching with hands, clinical findings show differences in the size of keloids in the same area. Hence, we performed histological studies on giant keloids larger than the earlobe, and other smaller keloids. We also examined the risk factors associated with the formation of giant lesions. No statistically significant differences in the association of the risk factors were observed. However, histological observations clearly showed a high number of degranulated or active mast cells with a trend towards a greater number of degranulated mast cells in the giant keloid tissues. Collagen production also tended to increase. Two patients with giant keloids were severely obese, suggesting that the persistent inflammatory state of obesity may also be involved in the growth of keloid lesions

    Role of Wnt Signaling in Mouse Fetal Skin Wound Healing

    No full text
    Wnt proteins secrete glycoproteins that are involved in various cellular processes to maintain homeostasis during development and adulthood. However, the expression and role of Wnt in wound healing have not been fully documented. Our previous studies have shown that, in an early-stage mouse fetus, no scarring occurred after cutaneous wounding, and complete regeneration was achieved. In this study, the expression and localization of Wnt proteins in a mouse fetal-wound-healing model and their associations with scar formation were analyzed. Wnt-related molecules were detected by in-situ hybridization, immunostaining, and real-time polymerase chain reaction. The results showed altered expression of Wnt-related molecules during the wound-healing process. Moreover, scar formation was suppressed by Wnt inhibitors, suggesting that Wnt signaling may be involved in wound healing and scar formation. Thus, regulation of Wnt signaling may be a possible mechanism to control scar formation
    corecore